
ME 169 Final Report: Implementing Continuous
Space Mapping
Tyler Nguyen, Lorenzo Shaikewitz

I. INTRODUCTION

In ME 133b we simulated a compelling alternative to grid-
based mapping that emphasized continuous space. The basic
idea was simple: instead of dividing the world into grid points
that are either ”occupied”, ”free”, or ”unknown”, assume the
entire world is free space and store the exact position of
obstacles as they are encountered. To prevent discretization,
obstacles were stored as line segments. Our results showed
clear memory advantages over a grid without any major
issues for high-level motion planning, but were limited by
the simulation’s assumption of perfect odometry and perfect
sensing.

With this project, we implement continuous space mapping
on an ME 169 robot equipped with LiDAR (RPLIDAR A1).
For simplicity, we retain the assumption of perfect odometry
and focus on the simpler problem of pure mapping. Our
specific goals were to use continuous space to map obstacles
under the following assumptions:

• Our sensor is not perfect, and may sometimes detect
obstacles in places where there are none.

• Obstacles may move, disappear, appear, or change shape.
• The robot must not hit any obstacles during its mapping

routine.
• Sensor integration only occurs while the robot is station-

ary.

Fig. 1. A close-up view of the robot used. The robot has two motorized
wheels and a ball roller. The LiDAR is mounted on top of the robot.

Although we had implemented this concept in simulation,
the addition of sensor noise required a significant reformula-
tion of the problem. The result, though not complete, shows
the strong potential of using line segments for mapping and
offers key lessons for future improvement.

Fig. 2. A screen capture of the mapping algorithm in action! The dark yellow
walls are saved walls that are no longer directly visible, while the bright yellow
walls are the visible ones. In a hallway with a box, the robot successfully
detected the box after circumnavigating it.

II. ALGORITHM

The basic mapping algorithm converts incoming sensor data
into lines and merges this data into an existing line map.
Specifically, it:
A) Converts incoming sensor data (points) into Cartesian

coordinates and then into lines.
B) Preprocesses the existing wall list, associating each sensor

line with a nearby wall and removing existing walls that
the latest scan sees through.

C) Updates each wall according to the new sensor data.
D) Post-processes the wall map, eliding walls by slope and

adjacency.
The resulting wall map was used for local planning, which

could be extended to a higher-level motion planning algorithm.
The robot’s initial position and orientation define the origin
and axes of the map. Also note that the process of associating



lines with nearby walls may be used for minor corrections to
odometry (localization), but this feature was not implemented.

A. Sensor Data Conversion

The first step in continuous mapping is converting the
discrete sensor data into lines. The RPLIDAR node handles
reading the sensor and transmits a LaserScan message. We
use the LaserProjection library to convert this LaserScan into
Cartesian coordinates. This library automatically compensates
for the slight delay between laser points and any effects from
turning. The resulting PointCloud2 message contains a list of
points in the robot’s base frame.

These points are received in a separate node and converted
into lines using a series of least squares regressions. Assuming
the list of points is ordered by LiDAR angle, we begin with
the first point and continue adding points to the regression
until the least squares error exceeds some threshold. Then, the
longest line that falls within the threshold is saved and the
process repeats with the next set of lines. To summarize:

1) Begin with the first two points from the LiDAR scan
(ordered by angle).

2) Add a point to the list.
3) Compute the least squares regression line of the points

in the current list.
4) If the error is less than a threshold, save the regression

line and repeat 2 and 3. Otherwise:
5) Add the previously saved regression line to the list of

scan lines. If there is none, add the line between the first
two points in the list.

6) Select the next two points and repeat from step 2 until
there are no more points.

This algorithm proved quite effective at accurately con-
verting points to lines (see Figure 4. Its main parameter,
the error threshold, must be carefully tuned to achieve good
performance. This threshold balances information loss from
the conversion to continuous space: a low threshold fails to
filter out minor sensor noise, while a high threshold hides
small features. Although sensor noise increased with the
distance of an obstacle, we used a single threshold primarily
tuned for nearby walls. Another source of error was from angle
wrapping. Without proper wrapping, the line is always split
into two at the branch cut.

B. Wall Preprocessing

After converting the latest sensor data into lines, the algo-
rithm fuses this update into its existing wall map. On a high
level, this fusing combines sensor data with nearby previously
measured walls, then checks the whether the remaining previ-
ously measured walls are visible with the current sensor sweep.
If the walls are not visible, they remain in the map. If the walls
should be visible (but are not near any of the sensor data), they
are immediately removed. Practically, this means we average
new obstacle data with the existing map but assume the sensor
never sees through a true wall.

The specifics of this set of algorithms are tuned to produce
output useful for wall updating and post processing. First,

the preprocessing code pairs every sensor line with a previ-
ously measured wall line, if possible. The paired wall line is
determined from distance and slope similarity thresholds. If
multiple walls meet these criteria, the wall with a midpoint
closest to the scan line’s midpoint is chosen. This approach
is simple but not optimal: it sometimes selects walls that are
disjoint but near the scan line’s endpoint, and it can fail if the
optimal wall is very long. However, in most cases it generates
an accurate wall-to-scan mapping.

Before handing the remaining walls, preprocessing re-
examines each paired wall for partial occlusion. Any walls
that are partially occluded by measurements they are not
associated with are split into associated portions and occluded
portions. We measure partial occlusion by converting each
line’s endpoint into polar coordinates and finding the angles
where scan lines are in front of wall lines.

Lastly, we process each of the remaining walls into two
categories: blocked and visible. Since we are only interested
in full blockage, we use a line connecting the midpoint of
the wall to the robot’s current position. If this line does not
intersect any scan lines it is marked ”visible” and removed
from the map. Conversely, if a line intersects a scan line
it is marked ”blocked” and remains in the map. Note that
this does not properly handle a partially blocked obstacle that
disappeared or shrunk.

C. Wall Updating

With the existing walls converted into blocked, visible, and
paired walls, the next step of our mapping routine is to update
the locations and slopes of the paired walls. This algorithm is
as follows:

1) Select a scan line (order of scan lines does not matter).
2) If the scan line has no previously measured wall associ-

ated with it, add the scan line to the map. Otherwise:
a) Let v̂ be a unit vector in the direction of the scan line

and ŵ be a unit vector in the direction of the associated
wall such that v̂ · ŵ > 0.

b) Let â be unit vector in the direction of some predefined
linear combination of v̂ and ŵ (weighting ŵ slightly
more).

c) Compute the normal to â pointing from the scan line
to the wall line as: n̂ = (v̂ × ŵ)× â.

d) Compute the projection of the distance between the
scan line’s endpoints and the wall’s endpoints onto n̂.
That is, if the scan line has endpoints with vectors p1
and p2 and the wall has q1 and q2, compute d1 =
prn̂(p1 − q1) and d2 = prn̂(p2 − q2).

e) Define a new line with endpoints r1 = p1 + d1 and
r2 = p2 + d2. Add this line to the map.

3) Repeat from step 1 until all scan lines are processed.
This procedure produces a series of walls that are around the

same length as the measurement lines but have an averaged
slope and position. Long previous wall lines are broken up
into smaller lines, allowing recognition of gaps (from for
example, an opening doorway). This process heavily weights



Fig. 3. An overview of the basic structure of the code. The RPLIDAR node is provided and converts LiDAR data into a LaserScan message. The LaserPoints
node converts this message into the base frame, compensating for timing. Lastly, the Slam node performs mapping, integrating information from odometry.
A separate structure of nodes handles odometry collection, local planning, and low-level control.

Fig. 4. The line detection algorithm at work. Light green points are the raw
LiDAR laserscan message, while the solid red lines are the instaneous fitted
lines. Near the robot (left), the line fitting does a good job approximating the
sensor data. Further from the robot (right), the error threshold is too low to
fit long segments of data.

Fig. 5. A simple example of pairing sensor data with pre-existing map data.
Given three wall lines and three lines from the latest sensor data, the pairing
algorithm pairs the two closest lines, allowing for some distance and angle
variation. In this example, lines of the same color are paired.

new measurements, enabling quick recognition of a changing
environment but high sensitivity to noise. Without proper care,
the procedure can also lead to improper shortening of existing
walls that are partially occluded.

D. Post-Processing

The final step in the mapping algorithm is to post-process
the map, connecting nearby lines and pruning unnecessary
ones. This process uses a list of all line endpoints to 1) merge
any endpoints that are reasonably close together and 2) merge
adjacent lines with similar slopes. Notably, this method does
not remove overlapping walls.

Fig. 6. The robot’s occlusion checker operates differently for unpaired and
paired walls. The unpaired walls (shown above) are simply checked using
a line from their midpoint to the robot’s origin. If the line crosses a sensor
line, the unpaired wall remains in the map. Otherwise, it is removed. This is
vulnerable to missing lines that may have been shortened, such as the line
to the left. For paired lines (right), the robot uses an angle sweep to identify
and keep the segment that is partially occluded.

Fig. 7. Without post-processing, long walls are broken up into a series of
short walls. Every other wall is highlighted in orange to show this effect.

III. EVALUATION AND LIMITATIONS

A. Qualitative Assessment

This project focused on using lines in continuous space to
recognize obstacles and create a map. We begin with several
qualitative assessments of the quality of the produced map.
Figure 8 shows two different maps generated by the algorithm.
Without motion, the system reliably produces a fairly accurate
and stable map. Especially as the lines get further from the
robot, however, the map becomes increasing unstable and
inaccurate. This is a result of the uniform offset applied to all
sensor ranges; using a variable offset would ensure increased
line stability.

With motion, the map is clearly quite incomplete. Hidden
lines are discontinuous, despite once harboring a continuous
line. This effect traces back to our algorithm for merging
lines: existing walls are automatically shortened to the length



Fig. 8. Two different maps generated by the robot. In a simple map (left), the robot can see all walls and identify their location, although it misses parts of
the corners. In the more complex map, it still accurately identifies visible obstacles but has only a rough map of previously explored areas.

of the latest scan lines. As the robot turns a corner, the
soon-to-be-occluded wall becomes shorter and shorter. Our
solution, estimating where walls were partially occluded, was
not reliable enough to truly fix this issue.

Additionally, we implemented a local planner that checks if
a path intersects or comes close to any lines in the map. This
was the most successful result, with every local plan tested
exhibiting correct behavior. Qualitatively, these continuous
space maps are useful for planning in visible space, but only
usable as a rough guide for planning in previously explored
space.

B. Quantitative Results

We also evaluated the mapping algorithm for speed and
memory in various environments. Though this algorithm is
quite memory efficient, using continuous space requires signif-
icantly more computational resources. It is worth noting that
the low number of wall lines allowed us to use brute force
for nearly every algorithm; the current version of the code
leaves opportunity for significant optimization. Speed trials
were conducted using a Raspberry Pi 4 computer.

Three trials were conducted in two different spaces: one
simple space, small with no obstacles and right angles, and one
more complex space. Each trial was recorded after some robot
exploration of the space. Table I shows the average memory
requirement (number of lines, where each line is four integers)
and run time per scan. Note that scans were acquired at 6
Hz and processed much slower. Additionally, Table I shows a
breakdown of the run times for each method of the algorithm
described above.

These results show some important trends with our code.
In a simple map, processing routines are quite fast and the
slowest process is sensor conversion. In contrast, the more

TABLE I
LINE COUNTS AND RUN TIME FOR A SINGLE UPDATE FROM AN INCOMING

SCAN, BROKEN DOWN BY SUBPROCESS.

Simple Map Complex Map
Line Count 9.33 202
Total Runtime 560.2 1341.6
Sensor Conversion Runtime 510.6 211.6
Preprocessing Runtime 13.0 945.6
Map Updating Runtime 29.3 65.3
Post-Processing Runtime 5.9 118.8

complex map has a faster sensor conversion run time but
a much slower preprocessing routine. Sensor conversion is
slower in the smaller map because lines are longer; longer
lines contribute to larger matrix multiplications to compute
the least squares error. As expected, preprocessing is much
slower with a larger map. This traces back to the brute force
algorithms used to compute nearby walls; with more than 200
walls in the map, these algorithms take significant time. Map
updating, a simple process, is very quick in both trials.

IV. FURTHER POSSIBILITIES

Perhaps the most exciting result of this project is that
continuous mapping is possible because it enables a host of
further possibilities. While generating a map in continuous
space is difficult with discrete sensor data, lines make high-
level planning much more interesting. This starts with local
planning, which is as simple as checking whether a specified
path crosses one of the given walls. In fact, it may be beneficial
to perform simultaneous localization and mapping in grid
space and convert the grid into lines for motion planning,
although this conversion introduces its own set of challenges.

Another extension of this project could use the continuous
mapping to identify macro-scale objects. Additionally, our



continuous-space map is ripe for an implementation of Tangent
Bug, or an exploration method, or generation of a Voronoi
diagram. Here we consider the latter possibility in some detail.

A. Voronoi Diagram From Continuous Space

The use of lines to identify obstacles could enable an ef-
ficient dynamic generalized Voronoi diagram implementation.
Suppose the robot has perfect (or at least reliable) localization
and mapping that outputs the robot’s position in an incomplete
map with obstacles.

To compute the local Voronoi diagram, first pair each line
with the two closest lines, recording the position where the
closest line changes. Assuming no lines can intersect, the
closest line can only change if the new closest line has an
endpoint. This simplifies finding the exact position of closest
lines: only line distance from endpoints must be computed.
After the two closest lines are identified, compute the known
Voronoi diagram. Using this local Voronoi diagram we could
implement some form of Tanget Bug, moving towards the
target until an obstacle is reached, then following the Voronoi
diagram around the obstacle until the path to the target is no
longer blocked or the obstacle is completely circumnavigated.
Like in tangent bug, in the latter case the algorithm could
move to the closest reachable meet point to the goal (making
sure not to select the same meet point from a given obstacle
twice) and repeat.

Alternatively, wall lines could be used to perform a gradient
decent until a point equidistant from the two closest lines was
reached. Then, the robot could remain on the Voronoi diagram
until it had a clear path to its destination.

V. DISCUSSION

There were some key disappointments and many surprises
during this project. First, dealing with sensor noise proved
much more difficult than anticipated. On a grid, incoming
sensor measurements can just be used to update their respec-
tive grid points, perhaps with some confidence or Gaussian
distribution. In continuous space, it is impractical to simply
keep adding lines with new sensor measurements. Instead,
sensor measurements must be carefully integrated with pre-
vious measurements to produce an estimate of the wall’s true
position. Our method of combining data heavily weighted the
LiDAR’s incoming data, leading to significant information loss
on every update. Improving this combination algorithm is an
important step to improving continuous space mapping.

Another related issue was retaining old sensor measure-
ments. Allowing the LiDAR to continuously capture and
update the map while it was driving proved impractical: the
data while it was moving was far more noisy than the data
while it was stationary. This could also be fixed by improving
the combination algorithm to use confidences in combining
sensor data. Since this required a major restructuring, we
simply turned off map updating while the robot was driving.
This fix, while convenient, highlights the fundamental issue
with the assumptions about sensor noise used for this project.

Beyond these issues, nearly every step of the continuous
mapping required significant computation, largely by brute
force. The low number of obstacles to check due to advantages
of continuous mapping made these solutions viable, but adding
multiple layers of higher-level planning would require opti-
mization of the mapping algorithms. Using a more powerful
computer, or ROS network capabilities, could also improve
this performance.

VI. CONCLUSION

We developed a memory-efficient (though somewhat slow)
mapping algorithm that operates in continuous space. Rather
than fitting the world to a grid, our algorithm uses line seg-
ments to identify the exact position of obstacles. This enables
highly precise maps of obstacle position with limited memory,
and creates a framework ripe for higher-level planning.

Despite its advantages, our system is far from perfect.
Working in continuous space complicates combining sensor
measurements, retaining old sensor data, and identifying mov-
ing obstacles. The resulting maps were somewhat noisy and
failed to accurately retain information about hidden walls.
These problems, however, are not innate to a continuous
mapping structure. Better handling of sensor noise, such
as incorporating LiDAR data from multiple measurements
and allowing the possibility of LiDAR missing an obstacle,
could significantly improve the robot’s ability to accurately
retain information about obstacles as it moves. Additionally, a
more robust occlusion checking system that incorporates the
estimated walls as well as new sensor data could produce a
much more accurate map.

Ultimately, this experiment in continuous mapping was
mixed. Using continuous space to fit a map to noisy point
cloud sensor measurements as the robot moved proved sig-
nificantly more difficult than anticipated. The end result is
an incomplete map, but one that may still be used for basic
planning. With further improvements, a truly robust continuous
mapping system is possible.


	Introduction
	Algorithm
	Sensor Data Conversion
	Wall Preprocessing
	Wall Updating
	Post-Processing

	Evaluation and Limitations
	Qualitative Assessment
	Quantitative Results

	Further Possibilities
	Voronoi Diagram From Continuous Space

	Discussion
	Conclusion

