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ABSTRACT

Autonomous machines rely on reliable 3D object understanding to interpret and interact
with their environment. We consider two tightly coupled 3D object understanding problems.
Shape estimation seeks a consistent 3D model of an object given sensor data and some set
of priors. Pose estimation seeks an estimate of the object’s position and orientation relative
to an invariant shape frame. In general, these problems are non-convex and thus difficult to
solve accurately. We present algorithms which nonetheless solve shape and pose estimation
efficiently and with assurances in the sense of optimality, uncertainty, or speed.

We begin in the multi-frame tracking setting, where we propose the certifiably optimal
estimator CAST⋆ for simultaneous shape estimation and object tracking. We use 3D keypoint
measurements extracted from an RGB-D image sequence to phrase estimation as fixed-lag
smoothing, and impose temporal constraints to enforce rigidity and smooth the motion
model. Despite the non-convexity of this problem, we solve it to certifiable optimality using
a small-size semidefinite relaxation. We also present compatibility-based outlier rejection
scheme to handle outliers, and evaluate the proposed approach on synthetic and real data.

Next, we focus on object pose estimation with known shape from a single RGB im-
age. Assuming only bounded noise on 2D keypoint measurements (e.g., from conformal
prediction), we derive an estimator for the most likely object pose which uses a semidefinite
relaxation to initialize a local solver. We pair this with an efficient uncertainty estimation
routinue which relies on a generalization of the S-Lemma to propagate keypoint uncertainty
to high-probability translation and rotation bounds. The high-probability bounds hold re-
gardless of the accuracy of the pose estimate, and are reasonably tight when tested on the
LineMOD-Occluded dataset.

Lastly, we propose a sub-millisecond solution to simultaneous estimation of object shape
and pose from a single RGB-D image. Our approach converts the first-order conditions of
the non-convex optimization problem to a nonlinear eigenproblem in the quaternion rep-
resentation of orientation. We use self-consistent field iteration to efficiently arrive at a
local stationary point, finding solutions more than an order of magnitude faster than Gauss-
Newton or on-manifold local solvers on synthetically generated data. The speed of the
estimator ensures it can be run in real time on limited hardware.
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Chapter 1

Introduction

Three-dimensional object understanding is a fundamental problem in computer vision and
robotics. Objects themselves are an important abstraction for an autonomous machine to
reason about and interact with its environment. In recent years, two-dimensional object
understanding has seen significant advances. This class of problems includes classification,
semantic segmentation, and feature detection. Benefitting from the abundance of image
training data, learned classifiers and segmenters are effective and robust. It is now reasonably
straightforward to train a classifier to identify an arbitrary object or category of objects or
use a vision-language model to perform similar tasks. However, two-dimensional object
understanding is not always enough. To navigate and interact with the environment, 3D
information is crucial, especially when safety or efficiency are important factors.

In this thesis we consider two tightly coupled 3D object understanding problems. Shape
estimation seeks to build a 3D model of an object under some prior information. We use
category-level priors, assuming a library of 3D models for each category and representing
arbitrary objects within the category using an active shape model. Importantly, category-
level priors preserve semantic information about the location of key features. For example,
the shape estimate of an arbitrary bottle would including annotations of the 3D positions
of the bottle’s cap, label, base, etc. The shape estimate also provides a consistent frame for
the object’s 6D pose (i.e., position and orientation).

Pose estimation is the second fundamental problem we consider. Given an object’s shape,
the 6D pose completely describes the location of each part of the object. We seek estimates of
the shape and pose from 2D images, potentially including depth information. These images
can come from an RGB or RGB-D camera, which are common on robots and allow us to
leverage advances in 2D object understanding. From another perspective, the shape and
pose estimation problem is to de-noise the raw pixel and depth measurements of an object’s
points under some set of priors about the object.

Our general procedure will be to convert the high-dimensional sensor input into a sparse
set of lower-dimensional keypoints with known correspondences to a 3D model or set of 3D
models. Under some noise model, we formulate and solve an optimization problem for the
desired estimates. In general, optimization over the manifold of orientations is non-convex
and cannot be solved efficiently to global optimality. In the absence of global optimality
solvers are prone to local solutions which correspond to bad estimates and highly dependent
on an initial guess. Importantly, local solvers cannot distinguish between local and global
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solutions, meaning they may produce bad estimates without warning.
We emphasize methods which come with assurances of a good estimate. In particular,

Chapters 3 and 4 focus on certifiably globally optimal optimization, which reports a cer-
tificate that guarantees the estimate is globally optimal. In Chapter 5 we take a different
approach, presenting a hyper-fast solver that allows high-rate estimation of shape and pose
in real time.

Optimization with a sparse set of keypoints is not the only paradigm for 3D object
understanding problems. Using a dense pixel-to-3D mapping is an increasingly popular
approach [1]. However, it forgoes the guarantees we can achieve with sparse keypoints. We
review this technique and other approaches in Section 1.2.

1.1 Summary of Contributions
TODO

1.2 Related Work
There is a significant body of work tackling the problems of shape and pose estimation
with assurances. We review key paradigms in estimation from single images, object tracking
across images, and pose estimation with uncertainty sets. We also review the growing field
of certifiable optimization for robotics problems. The work in this thesis is most connected
to [2] and [3].

1.2.1 Single-Frame Shape and Pose Estimation

The dominant paradigm for single-frame reasoning is the two-stage approach. In this ap-
proach, a network first estimates correspondences between an image and some set of pri-
ors. Then, an analytic or learned algorithm extracts a pose and shape estimate from the
correspondence predictions. This approach has roots in classical point cloud registration
algorithms, which efficiently find a pose given correspondences [4, 5] or iteratively refine cor-
respondences [6, 7]. The rise of deep learning has substantially improved the correspondence
estimation stage. Learned keypoint detectors trained on specific objects [8] or a category of
objects [9–11] can efficiently detect a sparse set of correspondences. These are the front-ends
relied upon in [2, 12]. More generally, deep learning enables regression to more abstract inter-
mediate representations such as dense pixel-wise correspondences to a normalized frame [1]
or probabilistic representations of regions of interest [13]. Recently, FoundationPose [14]
shows training-free pose estimation given only a CAD model by exploiting a large pretrained
foundation model for feature extraction. The tradeoff with more abstract representations is
runtime; these methods require significant graphics and computational resources that inhibit
real-time deployment on embedded systems.

Under these paradigms, the gap between estimating a pose given a known shape and
simultaneously estimating shape and pose from a known prior is relatively small. Normal-
ized object coordinates [1] paired with a neural-implicit shape decoder for shape estimation
are particularly generalizeable to objects beyond a single category [15, 16]. Neural signed
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distance fields can be learned from a series of images picturing a novel object [14, 17]. In
Chapters 3, 5 we use an active shape model similar to [18–20].

In this thesis we use a keypoint-based front-end [8, 9, 21] and focus on analytical algo-
rithms for pose and shape estimation. With few exceptions [2, 12], many of the dominant
approaches reviewed here lack assurances. We use certifiable optimization to give certifi-
cates when the pose estimates are trustworthy, and propose substantially faster back-ends
for real-time correction.

Pose Uncertainty

It is often desirable to have some measure of the uncertainty of a pose estimate. A simple
lower bound on the covariance of the pose estimate can be obtained via the inverse Hessian at
the optimal pose estimate. This is the Cramer-Rao lower bound [22], and is thus not an upper
bound on uncertainty. Yang and Pavone [3] propose using conformal prediction [23] to obtain
high-probability error bounds on measurements. Follow-up works focus on propagating these
bounds to explicit uncertainty bounds on a pose estimate [24, 25] which are assumed to also
hold with high probability. This propagation is difficult due to non-convexity of rotations
and the implicit structure of a conformalized uncertainty set; the bounds given in [24, 25]
are relatively loose and require high-order semidefinite relaxations, making them quite slow.
A simpler approach might be to apply conformal prediction directly to a pose estimate, but
this requires additional assumptions to obtain a good pose estimate. In Chapter 4 we build
upon prior work [3, 24, 25] and propose an efficient algorithm to quickly obtain uncertainty
bounds.

1.2.2 Object Tracking Across Frames

The key distinction between single-frame pose estimation and tracking is the additional
information from multiple views. Traditional target tracking approaches circumvent shape
estimation by assuming the object to be a point mass [26] or assuming full knowledge of the
object shape [12, 13, 27–31]. Early approaches used handcrafted features, such as points,
edges [32], or planes [33] to compute relative poses. The set of pose estimates could then
be smoothed via Kalman filtering [27, 28]. More recently, the use of handcrafted features
has given way to learned features [30] and edge detection [31], and new approaches based
on point cloud registration [12], particle filtering [13], or unscented Kalman filters [29] have
emerged.

In practical settings, instance-level information is rarely available. Recent approaches
investigate pose and shape estimation for objects within a known category [34–38] or at
least similar enough to the training data [17]. These approaches generally extract a sparse
representation of the object to estimate relative motion between frames. Wang et al. [34]
focus on an attention mechanism for extracting frame-to-frame keypoints in a self-supervised
manner, leaving the work of relative pose estimation to point cloud registration, which is
unable to use temporal information beyond two frames. Wen and Bekris [35] use a similar
architecture but take a SLAM-inspired approach, using dense frame-to-frame feature corre-
spondences and multi-frame pose graph optimization to refine the estimate. Other methods
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use learned keypoint correspondences for the Iterative Closest Point (ICP) method [38] or
learning-based regression to estimate relative motion in the small pose regime [36].

Even with keyframe selection [17], frame-to-frame back-ends require a separate tool to
obtain object pose relative to a camera or world frame, which is often useful in applications.
In contrast, we propose an optimization back-end that produces certifiably optimal shape
and pose estimates from category-level keypoints without relying on local solvers. This gives
useful world-frame poses directly and allows the use of a motion model to mitigate the impact
of measurement noise.

1.2.3 Certifiable Algorithms

The work in this thesis extends the body of work on certifiable perception algorithms. A
certifiable algorithm solves an optimization problem and either provides a certificate of op-
timality or a bound on the suboptimality of the produced solution [12]. Certifiable algo-
rithms are typically derived using semidefinite relaxations, and are usually based on Shor’s
relaxation (see Section 2.1) of quadratically constrained quadratic programs (QCQPs) or
Lasserre’s relaxation of polynomial optimization problems [39–41]. Certifiable algorithms
have been proposed for rotation averaging [42, 43], pose graph optimization [44, 45], 3D
registration [12, 46], 2-view geometry [47, 48], perspective-n-point problems [49], and single-
frame pose and shape estimation [2]. Recent work has extended certifiable solvers to cope
with outliers [39] and anisotropic noise [50].
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Chapter 2

Preliminaries

In this chapter we present mathematical preliminaries that will be useful in the succeeding
chapters. First, Section 2.1 describes Shor’s relaxation as applied to rotation matrices in
SO(3). Section 2.2 details split conformal prediction and its coverage guarantees, and Section
2.3 gives properties of unit quaternions and their connection to rotation matrices. These
sections are self-contained but not comprehensive, providing references for a more detailed
perspective.

2.1 Rotation Matrices and Shor’s Relaxation
Here we review the quadratic structure of SO(3) and Shor’s semidefinite relaxation [41] which
can be used to solve rotation-constrained problems in polynomial time.

2.1.1 Special Orthogonal Group as Quadratic Constraints

The set of rotation matrices form the special orthogonal group. A matrix R ∈ R3×3 is
orthogonal if RTR = RRT = I3. This allows matrices of determinant ±1. The special
orthogonal matrix additional constrains the determinant to +1. This is equivalent to the
right-hand rule constraint: columns of R obey the right hand rule. Denoting columns by ri,
the right hand rule is:

det(R) = 1 ⇐⇒


r1 × r2 = r3

r2 × r3 = r1

r3 × r1 = r2

(2.1)

Together, the orthogonality and right-hand rule constraints make up quadratic inequal-
ity constraints. We give the explicit forms of these 15 quadratic inequality constraints in
Appendix B.1.

2.1.2 Shor’s Semidefinite Relaxation

Quadratic equality constraints such as SO(3) constraints are non-convex. Fortunately, they
lend themselves to a convex semidefinite relaxation known as Shor’s relaxation [41].
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Consider the following quadratically-constrained quadratic program (QCQP) for a given
set of symmetric matrices A, Bi, and Cj:

f ⋆ = min
x ∈ Rn

xTAx

s.t. xTBix ≤ 0, i = 1, ..., N,

xTCjx = 0, j = 1, ...,M

(2.2)

Eq. (2.2) is non-convex due to (i) quadratic equality constraints, (ii) quadratic inequality
constraints which may not be positive semidefinite, and (iii) a quadratic objective which
may not be positive semidefinite.

Notice that xTAx = tr(AxxT) for any quadratic. Thus, we can rewrite (2.2) in terms
of X ≜ xxT, where the matrix X ⪰ 0 and has rank 1. With this reparameterization, the
QCQP (2.2) is equivalent to:

f ⋆ = min
X ∈ Rn×n

tr(AX)

s.t. rank(X) = 1,

X ⪰ 0,

tr(BiX) ≤ 0, i = 1, ..., N,

tr(CjX) = 0, j = 1, ...,M

(2.3)

Eq. (2.3) is a semidefinite program with a linear objective and linear constraints. The
only non-convex piece is the rank constraint. Dropping the rank constraint gives a convex
semidefinite program known as Shor’s relaxation.

Theorem 2.1.1 (Shor’s Semidefinite Relaxation). Consider the following optimization prob-
lem:

fSDP = min
X ∈ Rn×n

xTAx

s.t. X ⪰ 0,

xTBix ≤ 0, i = 1, ..., N,

xTCjx = 0, j = 1, ...,M

(2.4)

The solution to (2.4) is a lower bound on the optimal objective of the non-convex QCQP (2.2).
That is, fSDP ≤ f ⋆.

Proof. The SDP (2.4) is the dual of the dual of the QCQP (2.2). We omit details here and
refer the interested reader to [51].

Shor’s relaxation is useful in practice because the duality gap is often small or near zero.
Further, it is the basis of the well-studied moment-sum-of-squares hierarchy, which gives
higher-order relaxations with tighter duality gaps [52].
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2.2 Split Conformal Prediction
Split conformal prediction [23] provides formal statistical guarantees on uncertainty under
relatively mild conditions. The key idea is to test a prediction algorithm on annotated data
which is similar enough to the expected test-time input. The predictor’s performance on
this data will inform its performance at test time. In this section we review split conformal
prediction, including assumptions and guarantees. For a comprehensive perspective see [53].

Given a predictor f : X → Y which predicts labels y ∈ Y from input x ∈ X , we wish
to quantify the uncertainty of its prediction. We are free to choose an uncertainty metric
s(x, y) that maps predictions and labels to the real line. The key idea of split conformal
prediction is to evaluate this metric on new calibration data annotated with ground truth
(xi, yi), i = 1, ..., N which is independent and identically distributed with the expected test
data. The prediction sets are quantiles of this evaluation at confidence α, plus a minor
numerical correction. Importantly, N may be small, on the order of 500 − 1000 points, to
get good coverage [54]. See Algorithm 2.1 for the full algorithm.

Data: Score s, confidence α ∈ [0, 1], and calibration data (xi, yi), i = 1, ..., N .
Result: Prediction set C(x) = {y ∈ Y : s(x, y) ≤ q}
for i← 1 to N do

Si ← s(xi, yi)
end

q ← Quantile
(
S, ⌈(1−α)(N+1)⌉

N

)
Algorithm 2.1: Standard split conformal prediction.

Useful score functions generally quantify the deviation of a prediction from its label.
For example, consider the scaled residual score [53] which we use in Section 4.4. Given a
predictor f and an uncertainty estimate σ(x), the scaled residual score is:

s(x, y) =
∥y − f(x)∥

σ(x)
(2.5)

This score is useful for keypoint detection, when the predictor outputs a pixel detection and
an uncertainty estimate. Importantly, we make no assumptions about the accuracy of the
predictor or its uncertainty estimate. Despite the mild assumptions, we can still obtain tight
uncertainty bounds.

Theorem 2.2.1 (Conformal Coverage). Consider calibration data (xi, yi) i = 1, ..., N which
is exchangeable with test data (xN+1, yN+1). Then, the prediction set C(x) given by Algorithm
2.1 satisfies:

1− α ≤ P (yN+1 ∈ C(xN+1)) ≤ 1− α +
1

N + 1
(2.6)

assuming the conformal scores Si are unique (no ties) with probability 1.

For a proof of Theorem 2.2.1 see [53]. Notice that split conformal prediction has a quite
general guarantee of tight coverage. The key assumption is exchangeability, which is a light
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relaxation of independent and identically distributed (the latter implies exchangeability).
Informally, exchangeability means that the data is indistinguishable if reordered. For ex-
ample, sampling from a finite set without replacement produces an exchangeable sequence
which is not independent.

2.3 Unit Quaternions
In this section, we review the rules of quaternion arithmetic for rigid rotations. For a more
complete discussion see [55]. For a historical perspective, [56] is relevant.

A unit quaternion q ∈ S3 is a unit vector q = [q1,q
T
v ]

T. The term q1 is called the scalar
part and the vector qv ∈ R3 is the vector part. We consider quaternions for their connection
to rigid rotations. Given an axis ω and angle θ, the quaternion representation is:

q =

[
cos(θ/2)
ω sin(θ/2)

]
(2.7)

Two properties are immediately apparent from (2.7). First, to undo a rotation by θ
simply negate the vector part: q−1 = [q1,−qT

v ]
T. Second, quaternions have double coverage:

−q and q represent the same rotation. Applying a rotation to a vector requires quaternion
algebra. To rotate a point y ∈ R3:

q⊗
[
0
y

]
⊗ q−1 =

[
0
Ry

]
(2.8)

where ⊗ denotes the quaternion product and R ∈ SO(3) is the rotation corresponding to the
quaternion q. The vector ỹ ≜ [0,yT]T is called the homogeneous form of y. In this thesis
we consider quaternion products as matrix-vector products. Given a ∈ R4 and b ∈ R4,

a⊗ b = Ω1(a)b = Ω2(b)a (2.9)

which defines the following product matrices:

Ω1(a) =


a1 −a2 −a3 −a4
a2 a1 −a4 a3
a3 a4 a1 −a2
a4 −a3 a2 a1

 and Ω2(a)


a1 −a2 −a3 −a4
a2 a1 a4 −a3
a3 −a4 a1 a2
a4 a3 −a2 a1

 (2.10)

The matrices Ω1 and Ω2 have several useful properties. We summarize these in the
Lemma below, inspired by [57].

Lemma 2.3.1 (Quaternion Product Properties). The quaternion product matrices (2.10)
satisfy the following properties.

(i) Inverse: for any a ∈ R4 and any y ∈ R3:

Ω1(a
−1) = Ω1(a)

T (2.11)
Ω2(a

−1) = Ω2(a)
T (2.12)

Ω1(−ỹ) = Ω1(ỹ
−1) = Ω1(ỹ)

T = −Ω1(ỹ) (2.13)
Ω2(−ỹ) = Ω2(ỹ

−1) = Ω2(ỹ)
T = −Ω2(ỹ) (2.14)
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(ii) Linearity: for any α ∈ R, a ∈ R4, b ∈ R4:

Ω1(a+ b) = Ω1(a) +Ω1(b) (2.15)
Ω2(a+ b) = Ω2(a) +Ω2(b) (2.16)

Ω1(αa) = αΩ1(a) (2.17)
Ω2(αa) = αΩ2(a) (2.18)

(iii) Commutative: for any a ∈ R4 and b ∈ R4, the matrices Ω1(a) and Ω2(b) commute:

Ω1(a)Ω2(b) = Ω2(b)Ω1(a) (2.19)

(iv) Orthogonality: for any unit quaternion q ∈ S3,

Ω1(q)Ω1(q)
T = I4 (2.20)

Ω2(q)Ω2(q)
T = I4 (2.21)

These properties may be checked by substitution. We conclude this section with a
quadratic form identity for rotations. Given x,y ∈ R3 and R ∈ SO(3), we rewrite the
inner product xTRy in terms of its quaternion q ∈ S3. Using (2.8),

xTRy = x̃T(q⊗ ỹ ⊗ q−1) (2.22)

From (2.9) we can rewrite the quaternion products as matrix-vector products:

q⊗ ỹ ⊗ q−1 = q⊗Ω1(q
−1)ỹ = Ω2(q)Ω1(q)

Tỹ (2.23)

Now use commutation and (2.9) to write this as a quadratic form:

xTRy = (Ω1(q)x̃)
T(Ω2(a)ỹ) = qTΩ2(x̃)

TΩ1(ỹ)q (2.24)

In summary, an inner product with a rotated vector can be rewritten as a quadratic form of
unit quaternions.

xTRy = −qTΩ2(x̃)Ω1(ỹ)q (2.25)
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Chapter 3

Globally Optimal Shape Estimation and
Object Tracking

This chapter details the Certifiable Algorithm for Shape and pose Estimation (CAST⋆).
Part of this work was published in Robotics and Automation Letters in 2024 as A Certifiable
Algorithm for Simultaneous Shape Estimation and Object Tracking [58] and the source code
is publicly available1.

Section 3.1 introduces the category-level shape and pose tracking problem. We use 3D
semantic keypoint measurements extracted from an RGB-D image sequence by an external
front-end, such as a neural network [9, 59]. Assuming Gaussian random noise, we phrase the
estimation as a fixed-lag smoothing problem. Temporal constraints enforce the object’s rigid-
ity and smooth motion according to a constant pseudo-world-frame or body-frame motion
model. The solutions to this problem are the estimates of the object’s state (poses, velocities)
and shape (parameterized according to the active shape model) over the smoothing horizon.
Our key contribution is to show that despite the non-convexity of the fixed-lag smoothing
problem, we can solve it to certifiable optimality using a small-size semidefinite relaxation in
the outlier-free case (Section 3.2). Under a body-frame velocity model we marginalize out
the shape estimation problem, while the world-frame model allows us to marginalize shape,
position, and velocity, leading to significant speedups.

For robustness to incorrect keypoint detections, Section 3.3 describes a fast outlier re-
jection scheme. We use compatibility tests based on the rigid-body assumption and active
shape model for fast outlier rejection, and wrap our solver in a graduated non-convexity
scheme [60]. For a high-level overview of the outlier-robust method, denoted CAST#, see
Fig. 3.1a. In Section 3.4 we evaluate the proposed approach on synthetic and real data,
showcasing its performance in a table-top manipulation scenario and a drone-based vehicle
tracking application.

3.1 Problem Formulation
This section formalizes the category-level shape estimation and pose tracking problem. Given
a sequence of RGB-D images picturing an object of known category (e.g., a car), and as-

1https://github.com/MIT-SPARK/certifiable_tracking
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(a)

(b)

Figure 3.1: (a) Overview of CAST#. Given 3D keypoint measurements obtained via a
learning-based detector, we formulate a non-convex fixed-lag smoothing problem. We solve
this problem via a tight and small-size semidefinite relaxation and wrap the method in
an outlier rejection scheme to robustly estimate shape and pose over a fixed time horizon.
(b) Active Shape Model. Known 3D models in the bottle category and their averages
computed according to the active shape model. Vertices are the original models and edges
are the average of the two vertices. The active shape model can represent any 3D geometry
in the convex hull of its shape library through a point-wise weighted average.

suming the availability of a 3D semantic keypoint detector, we seek an estimate of the
time-independent shape and time-dependent pose (position and orientation) of the object.
Below we describe our choice of motion models, shape representation, and measurement
model.

3.1.1 Object State and Motion Models

We represent the target object’s state using its pose and velocity at a particular time t.
Denote the position and orientation of the target object in the world frame as pt ∈ R3

and Rt ∈ SO(3), respectively. We consider a body-frame model, a bilinear model which
generalizes the non-holonomic motion of ground vehicles such as cars, and a linear pseudo-
world-frame model which is less realistic but allows substantial computational speedup. We
first introduce the common framework and then specialize to each model.

Denote the target’s change in rotation between time steps with Ωt ∈ SO(3) and some
change in position with vt ∈ R3. These state variables are the discrete time analog to
velocity and rotation rate. Any object’s motion obeys the following discrete-time first-order
dynamics:

pt+1 = f(pt,Rt,Rt+1,vt), Rt+1 = Rt ·Ωt (3.1)
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where f is at most linear in vt and will be defined separately for the world and body-frame
models. The model (3.1) is quite general, since by choosing suitable values for vt, Ωt we can
produce arbitrary trajectories.

Now, we assume that the velocities’ dynamics are approximately constant; i.e., the veloc-
ity and the rotation rate are constant during short time intervals up to random perturbations
vϵ
t ∈ R3 and Rϵ

t ∈ SO(3):

vt+1 = vt + vϵ
t , Ωt+1 = Ωt ·Rϵ

t (3.2)

When vt and Ωt are exactly constant the dynamical system in equations (3.1)-(3.2) models
perfectly first-order dynamics. The random noise terms allow small deviations from this
assumption in the observed trajectory. We now specialize to the two motion models.

Body-Frame Model

Let vt be the target’s body-frame change in position. The body-frame motion model is:

pt+1 = pt +Rtvt ≜ fb(pt,Rt,Rt+1,vt) (3.3)

Together with (3.2), this assumes the velocities’ dynamics are approximately constant twist.
When vt and Ωt are exactly constant the dynamical system models 3D spiral-shaped trajec-
tories, including the corner cases of a straight line, circular trajectory, or in-place rotation.
The random noise terms model small deviations from these assumptions in the observed tra-
jectory. The proposed body-frame model is a 3D version of the popular constant-turn-rate
model [28], generalizing it to allow an arbitrary axis of rotation. Such a model is expres-
sive enough to capture the non-holonomic motion of a car and the unpredictable motions
of a manipulated object. Although realistic, we will see that the bilinear constraints intro-
duce additional constraints which cannot be analytically eliminated, resulting in a larger
estimation problem.

Pseudo-World-Frame Model

The pseudo-world-frame model is a reformulation of the body-frame model which sacrifices
interpretability for computational speed. Let vt be the change in position between time steps
as defined by the following first-order dynamics:

pt+1 = Rt+1(R
T
t pt + vt) ≜ fw(pt,Rt,Rt+1,vt) (3.4)

We call this model together with (3.2) a pseudo-world-frame model because it is a linear
update in the rotated frames: RT

t+1pt+1 = RT
t pt + vt. While there is no intuitive physical

interpretation, we expect any first-order approximation to be accurate for sufficiently small
time step between frames. The random noise terms in (3.2) allow the model to remain ex-
pressive to small deviations between time steps. The key utility of this model is in simplifying
the fixed lag smoother, described in Section 3.2.

In the following, we assume that the velocity noise follows an isotropic zero-mean Gaus-
sian distribution: vϵ

t ∼ N (0,Σv
t ) and that the relative rotation noise follows an isotropic

Langevin distribution about the identity, following standard practice [44] for distributions
over SO(3): Rϵ

t ∼ L(I3, κt). In this equation, κt is the concentration parameter of the
Langevin distribution (intuitively, this plays a similar role as the inverse of the variance).
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3.1.2 Shape Parameterization

We use the active shape model to represent intra-category shape variations. Given an object
category (e.g., bottle), we assume a library of 3D models (e.g., specific bottle shapes) that
span the category, where the objects in the library are denoted as Bk, k = 1, . . . , K. Any
instance, then, is just a pointwise linear combination of the models in the shape library (see
Fig. 3.1b). More formally, let xi be a point on the instance object corresponding to the point
bk
i ∈ Bk in each library shape. The active shape model is:

xi =
K∑
k=1

ckb
k
i ≜ Bic (3.5)

where ck ∈ [0, 1] and
∑

k ck = 1. Thus, the shape of the target object is fully specified by
its shape coefficient c = [c1, . . . , cK ] and the shape library for each point Bi = [b1

i , . . . ,b
K
i ].

This representation is simple and expressive: it captures any object in the convex hull of the
shape library (including the library shapes themselves) via a linear combination described by
a single vector of coefficients [61, 62]. Further, measurements of a small number of semantic
keypoints are enough to resolve the dense object shape.

3.1.3 Measurement Model

The inputs to our estimator are measurements of the 3D positions of semantic keypoints on
the target object. These keypoints correspond to semantically meaningful features common
to a specific object category, and are typically produced by a learning-based detector, as
in [9, 59]. For instance, a set of keypoints on a bottle might be the locations of the cap,
center-point of the base, label, etc. Such keypoints may be detected by a model trained on
a category of bottles, not just a particular instance.

At each time t we are given the 3D position of N keypoints denoted y1
t , . . . ,y

N
t . These

measurements obey the following generative model:

yi
t = Rt · (Bic) + pt + ϵit (3.6)

Each measurement yi
t is a rigid transformation (Rt,pt) of the keypoint’s location in the

object’s frame Bic (expressed according to the active shape model) plus measurement noise
ϵt. For now, we assume the measurement noise obeys an isotropic zero-mean Gaussian
distribution: ϵit ∼ N (0,Σi

t).

3.1.4 Simultaneous Shape Estimation and Tracking

We now state the primary problem we tackle in this chapter.

Problem 3.1.1. Consider an object of known category moving according to the dynamics
in eqs. (3.1)-(3.2) and a choice of motion model (3.3) or (3.4). Given measurements of
N keypoints in the form (3.6) taken over T time steps, estimate the time-varying state
(Rt,pt,vt,Ωt) and time-independent shape c of the object for t = 1, . . . , T .

Problem 3.1.1 may be interpreted as a fixed-lag smoother, where our primary goal is to
estimate the state at time T using also the most recent T − 1 measurements.
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3.2 CAST⋆: Certifiable Shape Estimation and Tracking
in the Outlier-Free Setting

This section presents CAST⋆, a certifiably optimal estimator solving Problem 3.1.1 in the
outlier-free setting. CAST⋆ is also the basis for our outlier-robust extension in Section 3.3.

We adopt a maximum a posteriori estimation framework that represents Problem 3.1.1 as
an optimization problem. This framework minimizes the residual errors of the measurement
and motion models over the time horizon T , possibly including priors. In our case, the only
prior is that shape coefficients c are distributed according to a Gaussian with covariance 1

λ
I3

about the mean shape c̄ ≜ 1
K
1K . In practice, this prior regularizes the problem when the

shape library is larger than the number of keypoints (K > N); see e.g. [2].
The maximum a posteriori estimator takes the form:

min
Rt,Ωl∈SO(3),

pt,vl∈R3,
c∈RK ,1T

Kc=1
t=1,...,T,

l=1,...,T−1

s.t.

T∑
t=1

N∑
i=1

wi
t

∥∥yi
t −RtBic− pt

∥∥2 + λ∥∆c∥2

+
T−1∑
t=1

ωt∥vt+1 − vt∥2 + κt∥Ωt+1 −Ωt∥2F

pt+1 = f(pt,Rt,Rt+1,vt), Rt+1 = RtΩt

(3.7)

In the previous expression, we used the shorthand ∆c ≜ c − c̄ and assumed isotropic co-
variances Σi

t ≜
1
wi

t
I3 and Σv

t ≜ 1
wt
I3. We also relaxed the constraint ck ≥ 0. We observe

that the objective is the sum of the shape prior with the negative log-likelihoods of the mea-
surements (3.6) and dynamics (3.2). The constraints enforce the domains of the variables
(e.g. Rt ∈ SO(3) or 1T

Kc = 1) and the dynamics (3.1), where f may be either the body-
frame model (3.3) or world-frame model 3.4. Eq. (3.7) is a maximum a posteriori estimator;
see Appendix A.1 for proof.

Notice that (3.7) is non-convex due to the constraint set SO(3) and the quadratic equality
constraints. Thus, local search methods such as gradient descent or Gauss-Newton are prone
to local minima that result in bad estimates.

In the following we present our approach to solving (3.7) to certifiable optimality via a
semidefinite relaxation. In Section 3.2.1 we simplify the problem by analytically solving for
the optimal shape coefficient. Using a change of variables, we rewrite (3.7) as a non-convex
quadratically constrained quadratic program (QCQP) (which can be simplified further in
the case of the pseudo-world-frame motion model) in Section 3.2.2 and apply a semidefinite
relaxation in Section 3.2.3. This relaxed problem can be solved using traditional convex
optimization techniques and is shown to be empirically tight (i.e., the relaxation solves (3.7)
to optimality) in Section 3.4.

3.2.1 Closed-Form Solution for Shape

Observe that (3.7) is a linearly constrained convex quadratic program in the variable c.
Thus, we can solve for the optimal shape coefficient c⋆ in closed form as a function of the
other unknown variables. We formalize this observation below.
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Proposition 3.2.1 (Optimal Shape). For any positions and rotations (pt,Rt), the optimal
shape coefficient solving (3.7) is

c⋆ = 2G

BT
T∑
t=1

Wt

R
T
t (y

1
t − pt)
...

RT
t (y

N
t − pt)

+ λc̄

+ g (3.8)

where we defined the following symbols:

Wt ≜ blkdiag(wt
1I3, . . . , w

t
NI3) ∈ R3N×3N

B ≜ [BT
1 , . . . ,B

T
T ]

T ∈ R3N×K

H ≜ 1
2

(
BT
(∑T

t=1Wt

)
B+ λIK

)−1

∈ RK×K

(3.9)

G ≜ H− H1K1
T
KH

1T
KH1K

, g ≜
H1K

1T
KH1K

(3.10)

Proof. See Appendix A.2.

3.2.2 Change of Variables to Quadratic Program

Problem (3.7) remains non-convex in the state variables (Rt,pt,vt,Ωt) due to quadratic
equality constraints. We aim to relax this problem into a convex semidefinite program. To-
wards this goal, we show how (3.7) can be rewritten as a quadratically constrained quadratic
program (QCQP). When f = fb (the body-frame model) this is simply a change of variables.
In the world-frame model, further simplification similar to Section 3.2.1 significantly reduces
the size of the QCQP.

In the objective the squared norm of RtBic
⋆ is quartic. We use the rotational invari-

ance of the ℓ2 norm to reparametrize position as st ≜ RT
t pt, turning the objective into a

quadratic function. Under this transformation the constraint set is quadratic: the dynamics
(3.1) become quadratic equalities, and the SO(3) constraints on rotations can be written as
quadratic equality constraints, see, e.g., [63]. The result is summarized below.

Proposition 3.2.2 (QCQP Formulation). Let c be defined as in (3.8), and note that it is a
linear function of Rt and st. The shape estimation and tracking problem can be equivalently
written as a quadratically constrained quadratic program:

min
Rt,Ωl∈SO(3),

st,vl∈R3,
t=1,...,T,

l=1,...,T−1

s.t.

T∑
t=1

N∑
i=1

wi
t

∥∥RT
t y

i
t −Bic− st

∥∥2 + λ∥∆c∥2

+
T−1∑
t=1

ωt∥vt+1 − vt∥2 + κt∥Ωt+1 −Ωt∥2F

Dst+1 = st + vt, Rt+1 = RtΩt

(3.11)

where D = Ωt in the body-frame model and D = I3 for the world-frame model.

Proof. See Appendix A.3.
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Body-Frame Motion Model

We rewrite (3.11) in canonical form, separating the quadratically constrained variables
(s,R,Ω) from the linearly constrained ones (v):

f ⋆
b = min

x∈R21T−8

v∈R3T−3

xTQx+ vTPv

s.t. xTAix+ dT
i v + fi = 0, i = 1, . . . ,m

(3.12)

In this equation, x is a vector in homogeneous form stacking all the unknowns in (3.11)
except for vt terms, which are stacked in v. Specifically:

x ≜ [1, vec(R1), . . . , vec(RT ), vec(Ω1), . . . , vec(ΩT−1), s1, . . . , sT ]
T (3.13)

The matrices Q, P, and Ai are known symmetric matrices governing the quadratic objective
and constraints, and the vectors di and scalars fi capture the linear and constant portions
of the m constraints, respectively.

Pseudo-World-Frame Motion Model

With D = I3, (3.11) is convex in st and vt. Crucially, the constraints are now linear functions
of vt and st with no bilinear constraints involving rotations. Before rewriting the QCQP in
canonical form, we can use the same principle in Section 3.2.1 to analytically solve for the
optimal positions and velocities as a function of the rotations.

Proposition 3.2.3 (Optimal Position and Velocity). Stack rotations in r, rotated positions
in s, and velocities in v, each vectors. For any rotations r, the optimal rotated positions and
velocities solving (3.7) with D = I3 are the solutions to the following linear system:2AT

sAs 0 DT
s

0 2AT
vAv −I3T−3

Ds −I3T−3 0

sv
µ

 =

−2AT
sAg − 2AT

sArr
0
0

 (3.14)

where µ ∈ R3T−3 is a dual variable. The expressions for As, Ag, and Ar are given in
Appendix A.4. We note that the leftmost matrix is invertible given at least 3 non-colinear
keypoints per time step and with T ≥ 3.

Proof. See Appendix A.4.

Notice that the position and velocity terms are linear in rotations. Thus, (3.11) remains
a QCQP with the substitution of p⋆

t and v⋆
t according to Proposition 3.2.3. We rewrite the

QCQP in canonical form:

f ⋆
w = min

x∈R18T−8
xTQ′x

s.t. xTA′
ix = 0, i = 1, . . . ,m′

(3.15)

Here, x is a homogeneous vector stacking all rotations and rotation rates:

x ≜ [1, vec(R1), . . . , vec(RT ), vec(Ω1), . . . , vec(ΩT−1)]
T (3.16)

The matrices Q′ and A′
i are known symmetric constant matrices describing the quadratic

objective and constraints. Compared to (3.12), the decision variable x is smaller and con-
straints between positions and velocities are dropped.
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3.2.3 Convex Semidefinite Relaxation

While the QCQP in (3.12) is still non-convex in the variable x, it admits a standard semidef-
inite relaxation [44, 64, 65]. Instead of solving for x directly, we reparametrize the problem
using X = xxT (a rank-1 positive semidefinite matrix), and drop the rank-1 constraint on X
to obtain a convex problem that may be solved by off-the-shelf solvers such as MOSEK [66].
This is the well-known Shor’s relaxation [41]. It takes slightly different forms for the world
and body-frame models.

Corollary 3.2.4 (Shor’s Relaxation). The following semidefinite program (SDP) is a convex
relaxation of the body-frame formulation (3.12):

f ⋆
SDP = min

X∈S21T−8

v∈R3T−3

trace(QX) + vTPv

s.t. trace(AiX) + dT
i v + fi = 0,

X ⪰ 0, i = 1, . . . ,m

(3.17)

Also, the following SDP is a convex relaxation of the world-frame QCQP (3.15):

f ⋆
SDP = min

X∈S18T−8
trace(Q′X)

s.t. trace(A′
iX) = 0,

X ⪰ 0, i = 1, . . . ,m′

(3.18)

Further, when the solution X⋆ of (3.17) or (3.15) is rank-1 we can recover exactly the
solution to the non-convex QCQP (3.12) by factorizing X⋆ = x⋆(x⋆)T.

Similar to relaxations derived in related work [2, 44, 67] the rank of X⋆ is a certificate
for the optimality of the solution. Moreover, we can bound the suboptimality of a feasible
solution to (3.12) obtained from (3.17) or (3.18) using the objective. Given a feasible solution
(x̂, v̂) achieving objective f̂ in (3.12), we bound its suboptimality using f̂ ≥ f ⋆ ≥ f ⋆

SDP. The
condition f̂ = f ⋆

SDP also certifies the optimality of the solution. The scalar f̂ − f ⋆
SDP is called

the suboptimality gap.
The SDP relaxation is relevant in practice because we observe it to be empirically tight

in the case of low-to-moderate noise and no outliers; hence it can produce optimal solutions
without needing an initial guess. Moreover, the size of the SDP is independent of the size
of the shape library, hence the relaxation is relatively efficient to solve. The key difference
between the body-frame SDP (3.17) world-frame SDP (3.18) is the number of decision vari-
ables and constraints. The world-frame model has a smaller set of decision variables allowing
faster computation.

We name the resulting approach CAST⋆: Certifiable Algorithm for Shape estimation and
Tracking.

3.3 Adding Outlier Robustness
Real-world measurements are often corrupted by outliers. In particular, sparse keypoints
are vulnerable to misdetections and incorrect depth measurements. Without modifications,
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Figure 3.2: Outlier compatibility tests. Most outliers are easy to identify via shape or
time compatibility tests. Shape compatibility retains keypoints that are mutually within
the convex hull of the known shape library. Time compatibility compares keypoint pairs
over multiple observations and retains groups that preserve 3D distance over time, up to a
tolerance ϵ. We determine the largest set of compatible measurements via a mixed integer
linear program.

outliers degrade the result of CAST⋆. To tackle this problem, we propose a preprocessing
step in which we quickly identify and prune gross outliers, and a wrapper for CAST⋆ that
iteratively converges to the inlier set. We name this approach CAST# and show empirical
robustness to 50-60% outliers.

3.3.1 Compatibility Checks to Remove Gross Outliers

Inspired by [2], we introduce compatibility tests to identify gross outliers (Fig. 3.2). These
tests rely on the assumptions of rigid-body motion of the object and the active shape model.
The most likely inlier set is thus the largest set of compatible measurements, found via a
fast mixed-integer linear program.

Shape Compatibility

Recall that any observed object must lie within the convex hull of the shape library by
assumption. Framed as pairwise compatibility, the true distance between any two keypoints
i and j must lie somewhere between the minimum and maximum distance between i and j in
the shape library models. Therefore, any two keypoint measurements that are outside this
bound cannot simultaneously be inliers; one or both must be outliers. Allowing for keypoint
noise expands these bounds as summarized in Proposition 3.3.1. Refer to [67] for a full proof.

Proposition 3.3.1 (Shape Compatibility Test). Let ϵ be the maximum error for a mea-
surement to be considered an inlier. If a pair of measurements yi

t and yj
t are both inliers,

then:
bmin
ij − 2ϵ ≤ ∥yi

t − yj
t∥ ≤ bmax

ij + 2ϵ (3.19)

where b
{min,max}
ij are the minimum and maximum distances between keypoints i and j in the
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shape library:
b
{min,max}
ij ≜ {min,max

c≥0,1T c=1

}∥(Bi −Bj)c∥ (3.20)

Time Compatibility

For a rigid body the distance between two points is constant over time. This forms the basis
for a compatibility test between pairs of points at two times.

Proposition 3.3.2 (Time Compatibility Test). Let ϵ be the maximum error for a measure-
ment to be considered an inlier. Consider the measurements of keypoints i and j at times l
and m. If these measurements are all inliers then:

|∥yi
l − yj

l ∥ − ∥y
i
m − yj

m∥| ≤ 4ϵ (3.21)

Proof. Compare the distance between keypoints i and j at each time, rotating to align
coordinates with the body frame:∣∣∥RT

l (y
i
l − yj

l ))∥ − ∥R
T
m(y

i
m − yj

m)∥
∣∣ (3.22)

Bound this using the reverse and forward triangle inequalities, noting that noise is isotropic
(Rϵ = ϵ):

(3.22)≤∥(Bi −Bj + ϵil − ϵjl )− (Bi −Bj + ϵim − ϵjm)∥
= ∥ϵi,ly − ϵi,ly − ϵi,my + ϵi,my ∥ ≤ 4ϵ

(3.23)

Since the 2-norm is invariant to rotations, we can remove the rotations from (3.22) and
obtain the result.

Outlier Pruning

Any set of inliers must satisfy the compatibility conditions presented above. To prune gross
outliers, we select the largest set of compatible measurements. Finding this set can be cast
as a mixed-integer linear program which we solve using the commercial solver COPT [68].

Proposition 3.3.3 (Largest Set of Compatible Measurements). Let S be the set of mea-
surement pairs that do not satisfy the shape compatibility condition (3.19) and T be the set
of groups of four measurements that do not satisfy the time compatibility condition (3.21).
The largest set of measurements that satisfy both shape and time compatibility is given by
the following mixed integer linear program:

argmax
θ∈{0,1}N×T

T∑
t=1

N∑
i=1

θit

s.t. θit + θjt ≤ 1 ∀ (t, i, j) ∈ S
θil + θjl + θim + θjm ≤ 3 ∀ (l,m, i, j) ∈ T

(3.24)

where θit = 1 denotes including measurement yi
t in the set.

The proof of Proposition 3.3.3 follows from Propositions 3.3.1 and 3.3.2.
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3.3.2 Graduated Non-Convexity for Robustness

While consistency checks can remove a significant proportion of outliers, they may miss a
number of difficult-to-detect outliers. To remove these remaining outliers we use CAST⋆ as
a non-minimal solver for graduated non-convexity (GNC) [60]. We use the truncated least
squares loss in GNC and follow the implementation and parameter choices of [60]. In our
experiments, we show the combination of GNC and our compatibility checks is robust to
50-60% of outliers.

3.4 Experiments
This section characterizes CAST⋆ and CAST#. Synthetic experiments (Section 3.4.1) show
the semidefinite relaxation in CAST⋆ is empirically tight and returns accurate estimates in the
presence of noise, while CAST# is robust to 50-60% outliers. Sections 3.4.2, 3.4.3, and 3.4.4
show CAST# is competitive with other category-level approaches on two public datasets and
a real-world drone-based vehicle tracking scenario. We also compare the world and body-
frame motion models in the synthetic and drone experiments, showing the world-frame model
has similar accuracy but substantial computational benefit.

Notation

Throughout this section we default to the body-frame motion model, which is better phys-
ically motivated. CAST⋆ refers to the outlier-free algorithm discussed in Section 3.2, and
CAST# refers to the outlier-robust algorithm in Section 3.3, both with the body-frame
model. Hyphens after CAST⋆ or CAST# indicate perturbations of the algorithm. For ex-
ample, CAST⋆-8 indicates CAST⋆ with T = 8 frames in the fixed lag smoother. To denote
the world-frame motion model, we use CAST⋆-W and CAST#-W. Other perturbations are
CAST# with ground truth 3D keypoints that include occluded points (CAST#-GT), CAST#
with ground truth pixel keypoints (depth from RGB-D image) that do not include occlusion
(denoted CAST#-GTK), and CAST⋆ with no motion model (CAST⋆-U). CAST⋆-U uses the
body-frame formulation and drops velocity and angular velocity objective terms.

3.4.1 Optimality and Robustness in Synthetic Dataset

Dataset

We generate keypoint measurements according to the measurement model in Section 3.1 for
the body-frame motion model. Ground truth trajectories follow the corresponding motion
model (3.1) and (3.3) with Gaussian velocity noise and Langevin rotation rate noise (process
noise). The ground truth trajectory and randomly generated shape determine the measured
keypoint positions without regard for occlusion, subject to Gaussian perturbations (mea-
surement noise) and outliers. We use the realistic PASCAL3D+ aeroplane shape library [69]
(with characteristic length l = 0.2 m) to generate a ground truth shape vector. In each ex-
periment, we fix measurement noise to 5% of the characteristic length, and the process noise
to 0.01 m and 0.01 rad. For the measurement noise experiment, we set the velocity weights
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(a) Measurement noise robustness of CAST⋆ with fixed process noise.

(b) Process noise robustness of CAST⋆ with fixed measurement noise.

(c) Outlier robustness of CAST# and ablations.

Figure 3.3: Performance of CAST⋆ and CAST# in synthetic experiments. Using
the PASCAL3D+ aeroplane shape library, we generate synthetic measurements to test the
robustness of CAST⋆ and CAST# to measurement noise, process noise, and outliers. Plots
show median and IQR of 500 runs.

ωt = 1 to improve tightness; results with standard weights for the body-frame motion model
and results for the world-frame motion model are provided in Appendix A.5.

Baselines

We compare CAST⋆ against PACE [2], a certifiably optimal solver for single-frame pose
estimation, and PACE+EKF, an approach that filters the pose estimate from PACE at each
time using an extended Kalman filter (EKF) while using a constant-twist motion model. We
test CAST⋆ with a time horizon of 4, 8, or 12 frames and label the corresponding results as
CAST⋆-4, CAST⋆-8, and CAST⋆-12; we also report CAST⋆-U, which is a variant of CAST⋆-12
with no velocity or rotation smoothing (ωt = 0, κt = 0). Finally, to test CAST#, we replace
a fraction of the measurements with random outliers normally distributed about the centroid
of the object with a standard deviation equal to the characteristic length. For the tests with
outliers, we compare against ablations of CAST# with only GNC or only compatibility-based
(MILP) outlier rejection without GNC and use T = 12. In each experiment we show the
median and interquartile range of the error of the last estimated state over 500 runs.
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Results

Fig. 3.3 reports the median position error (as a percent of length scale), rotation error (in de-
grees), shape error (l2 distance between predicted and ground truth shape vector c), and sub-
optimality gap or solve time for increasing measurement noise (normalized by length scale),
process noise (reported as a multiple of 5%), and outlier ratio. In all experiments, CAST⋆

and CAST# achieve the lowest median position, rotation, and shape error. In Figs. 3.3(a)
and 3.3(b), CAST⋆ is consistently tight (suboptimality gap < 10−4) in low to moderate noise,
and still gives an accurate estimate when not tight. Interestingly, while CAST⋆ outperforms
its unsmoothed variant CAST⋆-U, the latter remains tight for higher measurement noise.
CAST⋆-U benefits over PACE from access to additional measurements, and CAST⋆ benefits
over CAST⋆-U from additional information about the object’s motion. The primary cost of
CAST⋆ compared to PACE is its runtime, which ranged from 0.1 to 7 Hz depending on the
time horizon; see Appendix A.5 for detailed runtimes. Synthetic results are nearly identical
for the world-frame version of CAST⋆ and given in Appendix A.5.

We also note the poor performance of PACE-EKF in both experiments. The EKF pro-
vides some benefit for very low noise but quickly diverges for higher noise as the distribution
of PACE measurements deviates from Gaussian and the dynamics are nonlinear. We provide
a comparison to an EKF using perturbed ground truth poses in Appendix A.5.

The outlier experiment in Fig. 3.3(c) shows robustness to 50-60% of outliers using CAST#.
Compatibility tests alone are robust to 40-50% of outliers, while GNC only tolerates 20-30%
of outliers. The data show GNC and MILP-based outlier rejection are complimentary, with
the fast MILP solve time being unaffected by GNC in the low outlier regime.

3.4.2 YCBInEOAT Dataset

Dataset

The YCBInEOAT dataset [30] includes 9 RGB-D videos of a robotic manipulator interacting
with 5 YCB objects [70]. It includes in-hand manipulation, pick-and-place, and handovers.
We train a simple RGB keypoint detector for each object using their CAD models and
manually-defined semantic points. The detector has a ResNet18 backbone [71] and is trained
on the BOP YCB-V synthetic dataset [72]. We report the ADD and ADD-S area under the
precision-accuracy curve (AUC) scores at 0.1 m with estimated poses applied to ground truth
CAD models; see [73].

Baselines

We compare against state-of-the-art instance and category-level tracking approaches for the
cracker, sugar, and mustard objects. We omit the small soup object and bleach because it
matches the background and gripper colors and our simple keypoint detector is unable to
detect reasonable keypoints. TEASER++ [12] is the only instance-level approach and uses
the same keypoints given to CAST#.

For CAST#, we group mustard and bleach into the “bottle” category along with a CAD
model of a ketchup bottle [74] (3 shapes, 65 keypoints). Similarly, we group cracker and
sugar into the “box” category (2 shapes, 52 keypoints).
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Table 3.1: Comparison of Methods on YCBInEOAT Dataset

Method Cracker Sugar Mustard Reconst.
ADD ADD-S ADD ADD-S ADD ADD-S CD (cm)

6-PACK - - - - 34.49 80.76 -
TEASER++ 84.76 92.14 83.26 91.27 86.02 93.43 -
MaskFusion 79.74 88.28 36.18 45.62 11.55 13.11 -
BundleTrack 85.07 89.41 85.56 90.22 92.26 95.35 2.81
BundleSDF 81.44 90.76 86.55 92.85 90.83 95.48 1.16
CAST#-8 86.93 93.14 81.97 89.45 84.67 92.41 0.16

CAST#-GTK 89.00 94.09 91.05 95.27 92.18 96.17 -

Results from 6-PACK [34], MaskFusion [37], and BundleTrack [35] are taken from the
results reported in [35]. BundleSDF [17] results were replicated using the open source im-
plementation with ground truth segmentation masks. BundleSDF is the only category-free
method. Since our keypoint detector is fairly simple, we also report CAST# evaluated on
ground truth pixel keypoints with true depth and occlusions. For all methods we compute
scores using the ground truth shape and initialize with the first frame ground truth pose.
For CAST# and TEASER we do not need any initialization. We also report the chamfer
distance between the tightest final shape estimate (a dense 3D model) and the true shapes
averaged over all 5 objects [17].

Results

CAST# clearly outperforms baselines for the cracker object but underperforms for sugar and
mustard (Table 3.1). The results are encouraging: even with a simple keypoint detector,
CAST# outperforms elaborate learning-based methods. The sugar and mustard results
are not far behind baselines and mostly reflect the quality of the keypoint detector, which
struggles with smaller objects (see the video2). Given ground truth pixel keypoints, CAST#
outperforms virtually all baselines, despite the low-quality depth data in the dataset. CAST#
achieves a near-perfect reconstruction chamfer distance; note that the shape library includes
the true model.

3.4.3 NOCS Dataset

Dataset and Baselines

We evaluate our system on NOCS-REAL275 [1] on the camera (2561 frames) and mug
(2615 frames) object categories. We use a keypoint detector based on YOLOv8-pose [75]
trained on synthetic images of 5 mugs and 3 cameras compiled from 3D scans because the
NOCS training data does not include precise ground truth. Different from YCBInEOAT, the
detector and shape library do not include the ground truth object models; this experiment

2https://youtu.be/eTIlVD9pDtc
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Table 3.2: Comparison of Methods on NOCS Dataset

Method 6Pack CAPTRA BundleTrack iCaps CAST#-8 CAST#-GT

Initialization Pert GT Pert GT Pert GT 2D seg. 2D det. 2D det.

ca
m

er
a 5◦5cm 10.1 0.41 85.8 9.32 20.68 88.42

Rerr (deg) 35.7 17.82 3.0 13.69 11.07 2.33
perr (cm) 5.6 35.53 2.1 2.72 3.81 2.55

m
ug

5◦5cm 24.1 55.17 53.6 21.82 35.22 97.71
Rerr (deg) 21.3 5.36 5.2 10.69 8.42 1.45
perr (cm) 2.3 0.79 2.2 1.31 2.46 2.18

is truly category-level. We drop the laptop due to bad training data and the symmetric
objects, which CAST is not designed to handle. We report 5◦5cm: the percent of estimates
within 5◦ and 5 cm of the ground truth, Rerr: the mean orientation error (degrees), and
perr: the mean position error (cm). Consistent with [34], we exclude measurements with
high position error (0.1 m) from Rerr and perr. We compare category-level pose tracking with
6-PACK [34], CAPTRA [36], BundleTrack [35], and iCaps [76]. iCaps and CAST# consider
the more difficult problems of initializing tracking with a segmentation mask or 2D detection,
respectively. Baseline results are from Table 1 in [76].

Results

CAST# achieves state of the art for the 5◦5cm metric among methods that do not initialize
via ground truth (Table 3.2). There is still substantial gap between CAST# and methods
that rely on the less practical assumption of ground truth initialization. This reflects the
quality of the keypoint detector; with ground truth 3D keypoints ignoring occlusions, CAST#
is nearly perfect and outperforms all baselines except in perr, which is due to the size of the
shape library.

3.4.4 Drone-based Vehicle Tracking

We use the soft drone platform described in [77] to evaluate CAST# under dynamic real-
world conditions, see the video3.

During the experiment we remotely piloted a mini racecar in an elliptical trajectory
while the soft drone autonomously followed using the centroid and heading derived from raw
keypoints estimated at 30 Hz. Our keypoint detector, like the YCBInEOAT experiments,
used a ResNet architecture [71] with 7 keypoints, and was trained on images of a similar
racecar. Offline, we used motion capture to transform the 3D position of each keypoint to
the world frame (to compensate for the known motion of the drone) and ran CAST# to
estimate the racecar’s shape and pose at each time step. For the category-level shape library
we used scaled PASCAL3D+ car shapes and the racecar instance.

3https://youtu.be/eTIlVD9pDtc
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Table 3.3: Quantitative Results of Drone Experiment

Method ADD ↑ Rerr (deg) ↓ perr (cm) ↓ cerr ↓ FPS ↑
TEASER++ [12] 57.0 9.6± 23.2 4.3± 3.8 - 39.1

PACE [67] 52.0 12.1± 32.0 3.2± 2.4 0.79 3.94
CAST#-B4 56.6 7.6± 4.5 2.7± 1.3 0.84 3.65
CAST#-W4 56.8 7.7± 4.8 2.7± 1.3 0.83 18.8
CAST#-B8 58.0 7.0± 4.3 2.7± 1.4 0.76 1.44
CAST#-W8 58.0 7.0± 4.3 2.7± 1.4 0.76 5.02
CAST#-B12 58.8 6.5± 3.8 2.7± 1.4 0.71 0.67
CAST#-W12 59.0 6.7± 4.2 2.7± 1.4 0.71 1.95
CAST#-U 58.2 8.8± 15.1 4.6± 20.0 0.71 0.91

Quantitative results of TEASER, PACE, CAST#, and variants (CAST#-B denotes the
body-frame motion model and CAST#-W denotes the world-frame model) are given in Table
3.3. TEASER and PACE operate on the same raw keypoint data as CAST# and are tuned
for optimal performance. Across metrics, CAST# achieves the highest accuracy and lowest
mean errors. In particular, the batch approach with motion priors significantly decreases
the standard deviation of rotation and position errors. While the frames per second (FPS)
of CAST#-B are not competitive with TEASER, CAST#-W4 is not significantly slower than
TEASER and outperforms PACE with only tradeoff in rotation error. In practice, the frame
parameter can be used to tune the desired tradeoff between accuracy (using more frames) and
speed (using fewer frames). CAST#-W largely outperforms CAST#-B and is significantly
faster. The advantage of the more realistic motion model in CAST#-B manifests in the
average rotation error. We note that the PACE implementation is a comparatively slow
python-based implementation which accounts for its slower runtime.
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Chapter 4

Conformalized Monocular Pose and
Uncertainty Estimation

In the previous chapter we assumed the measurement noise followed an approximately Gaus-
sian distribution. The certificate of global optimality for the maximum likelihood estimator
is therefore contingent on this assumption. Further, obtaining reasonable estimates required
careful handling of outliers which sacrificed the maximum likelihood guarantees. In this
chapter we consider instead bounded measurement noise in the setting of known shape and
monocular pixel measurements (i.e., no depth). High probability bounds on the measurement
noise are easy to obtain under mild assumptions via conformal prediction. Propagating them
to a pose estimate with uncertainty, however, requires careful consideration. We propose a
semidefinite relaxation to find the most likely pose estimate and an elegant approach to con-
vert the implicit pose uncertainty set into an explicit ellipse with angular and translational
uncertainty bounds. Experimental results confirm the accuracy of this method against lead-
ing learning-based approaches and previous conformalized pose and uncertainty estimation
procedures.

4.1 Pose Estimation from Conformalized Pixel Keypoints
In this section we consider the conformalized monocular pose and uncertainty estimation
problem. From a single RGB image picturing an object of known shape we seek an estimate
of its 6D pose (position and orientation) with angular and translational uncertainty bounds.
We assume measurements in the form of conformalized pixel prediction sets with known
correspondences to the 3D object model. This section details the conformal uncertainty
set measurements and propagates them to a pose uncertainty set. Distinct from [3], we
explicitly propagate the coverage probability to the pose uncertainty set. Considering the
pose uncertainty set as a random quantity motivates a statistically meaningful estimate of
the most likely pose, as we will explore in Section 4.2. Further, we introduce bounds on the
∞-norm of the pose uncertainty set that are linear in position and orientation, improving
computation.
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Figure 4.1: Conformal calibration sets. We use conformal prediction with 2-norm un-
certainty (left) or ∞-norm uncertainty (right) to obtain uncertainty sets which contain the
ground truth keypoint with probability at least 1 − α (the same for every keypoint). The
radius of the uncertainty sets is determined by the 1 − α quantile of calibration errors.
To calibrate, we measure the distance between the detected and ground truth keypoints in
pixel space using some p-norm weighted by the confidence score. The calibration images
are assumed to be exchangeable with the test data (i.e., independent draws from the same
distribution).

4.1.1 Measurement Model: Pixel Uncertainty Sets

Our measurements are 2D pixel detections of known 3D object keypoints, with bounded
noise in pixel space. For each of N 3D object points, we assume a front-end detects their
approximate pixel location in the image frame. We obtain high-probability norm-ball un-
certainty bounds on the pixel measurements (see Fig. 4.1) using conformal calibration data
from exchangeable images. This leads to the following bounded uncertainty model.

Denote the known 3D object points in the object frame by bi ∈ R3 for i = 1, ..., N and
their corresponding pixel measurements by yi = [ui, vi, 1]

T. For an object with position
t ∈ R3 and orientation R ∈ SO(3), and a camera with known intrinsics K, the keypoint
measurement model is:

yi =
K(Rbi + t)

ê3 ·K(Rbi + t)
+ ϵi (4.1)

where ϵi ∈ R2 is some random measurement noise in homogeneous form ((ϵi)3 = 0) and
ê3 ≜ [0, 0, 1]T.

We make no distributional assumptions for ϵi. Instead, we assume its p-norm is bounded
with probability at least 1− αi:

P(∥ϵi∥p ≤ ri(αi)) ≥ 1− αi (4.2)

This type of bound is easy to obtain with relatively small amounts of calibration data through
split conformal prediction [53]. For now, take ri(αi) as a given constant for any choice of αi;
we explain our split conformal prediction procedure in Section 4.4.
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4.1.2 Pose Uncertainty Set

From the measurement model (4.1) and noise bound (4.2) we seek a pose uncertainty set
that contains the true pose with high probability. Begin by rephrasing the measurements.
Eqs. (4.1, 4.2) bound the maximum error of the keypoint measurement. Thus, the following
reprojection constraint holds with probability at least 1− αi for all i = 1, ..., N :∥∥∥∥yi −

K(Rbi + t)

ê3 ·K(Rbi + t)

∥∥∥∥
p

= ∥ϵi∥p ≤ ri(αi) (4.3)

Since we assume the object is in front of the camera, the projection of bi must have
positive depth. This is the chirality (front-of-camera) constraint for keypoint i.

ê3 ·K(Rbi + t) > 0 (FoC)

To proceed we convert the rational reprojection constraint (4.3) to a polynomial backpro-
jection constraint and specialize to the cases p =∞ and p = 2. As pictured in Fig. 4.1, the
∞-norm bound is equivalent to square axis-aligned uncertainty sets with side length 2ri(αi),
while the 2-norm bound gives circular uncertainty sets of radius ri(αi).

∞-Norm Backprojection Constraints

When p = ∞, (4.3) reduces to two inequality constraints which hold with probability at
least 1− αi for all i = 1, ..., N :{∣∣[yiê

T
3K(Rbi + t)−K(Rbi + t)

]
· ê1
∣∣ ≤ ri(αi)ê

T
3K(Rbi + t)∣∣[yiê

T
3K(Rbi + t)−K(Rbi + t)

]
· ê2
∣∣ ≤ ri(αi)ê

T
3K(Rbi + t)

(BP∞)

To derive this equation we multiplied (4.3) by the depth and used the chirality constraint (FoC)
to drop its absolute value on the right hand side. The infinity norm constrains each coordi-
nate independently; we drop the third coordinate since (yi)3 = 1, so the left hand side would
always be zero. Note that (BP∞) may be written as four inequality constraints which are
linear in R and t.

2-Norm Backprojection Constraints

For p = 2 we square the inequality (4.3) and multiply through by depth. This gives the
following inequality constraint which holds with probability at least 1−αi for all i = 1, ..., N :∥∥yiê

T
3K(Rbi + t)−K(Rbi + t)

∥∥2
2
≤ (ri(αi)ê

T
3K(Rbi + t))2 (BP2)

We observe that (BP2) is a quadratic function of t and vec(R). In the following sections
we refer to (BP∞) or (BP2) as (BPp), where p = 2 or p =∞.
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Pose Uncertainty Set

We are now ready to construct the pose uncertainty set. Combining the backprojection and
chirality constraints for each keypoint gives the following proposition.

Proposition 4.1.1 (Pose Uncertainty Set). Assume measurements of the form (4.1) with
noise bounded in p-norm by ri(αi) with probability at least 1 − αi for i = 1, .., N (that is,
satisfying eq. 4.2). The true position tgt and orientation Rgt are contained in the following
pose uncertainty set:{

t ∈ R3

R ∈ SO(3)

∣∣∣ (FoC) and (BPp) for i = 1, ..., N

}
(Pp)

with probability at least β.
In particular, for arbitrary dependence among ϵi we have β ≥ 1−

∑N
i=1 αi. In the extreme

where ϵi is independent from ϵj for all i ̸= j then β =
∏N

i=1(1−αi). When the ϵi are perfectly
positively correlated and all αi ≡ α, we have β = 1− α.

Proof. For perfect correlation the probability of (BPp) for all i is the same as the probability
for any choice of i. Under independence, the probability of the intersection of (BPp) for each
i reduces to a product. For arbitrary dependence, a union bound gives:

P

[
N⋂
i=1

(BPp)i

]
= 1− P

[
N⋃
i=1

(BPp)i

]
≥ 1−

N∑
i=1

P
[
(BPp)i

]
= 1−

N∑
i=1

αi (4.4)

Several remarks are in order. The set (Pp) is an implicit representation of the set of
poses which are consistent with the conformalized keypoint measurements (i.e., the key-
point measurements satisfying eq. 4.2). It is not immediately clear how to generate poses
which satisfy (Pp) beyond sampling [3]. It is also unclear how to obtain explicit angular or
translation bounds from the set of inequalities.

Lastly, we comment on the statistical guarantee of coverage of the ground truth pose.
We note that the worst case confidence can quickly become uninformative. For example, if
αi = 0.1 for all i and N = 10, the set (Pp) is guaranteed to contain the ground truth with
probability at least 0. In practice, however, we expect some positive correlation; thus, the
coverage should exceed the independent case. For our choice of αi = 0.1 and N = 10, we
expect the set (Pp) to contain the ground truth pose at least 35% of the time. We provide
empirical coverage results in Section 4.4, but note that coverage is difficult to verify due to
unreliable ground truth pose annotation in real data.

We now state the conformalized monocular pose and uncertainty estimation problem.

Problem 4.1.1. Given 2D keypoint uncertainty sets of the form (4.1), compute an estimate
of the ground truth object pose (t, R) with angular and translational bounds that hold with
probability at least β, where β is given in Proposition 4.1.1.
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4.2 Obtaining a Pose Estimate
In the previous section we reformulated explicit high-probability bounds on keypoint mea-
surement noise into an implicit pose uncertainty set of the form (Pp). Our primary goal in
this section is to compute an accurate estimate of the ground truth pose from these high-
probability bounds. Yang and Pavone [3] take the mean of poses sampled from (Pp) as
their estimate, which requires a computationally-intensive sampling procedure. In contrast,
we search for the mode: the most likely pose given uncertainty bounds. It is natural that
this mode is independent of the choice of confidence α, unlike the mean sampling procedure
in [3]. This handles the case where (Pp) is empty and can be solved from a single optimization
problem.

To find the mode of the distribution we first allow confidence α to vary. Explicitly
writing the dependence on α, recall that Pp(α) denotes the family of pose uncertainty sets
parameterized by confidence 1− αi for each keypoint i. Intuitively, lower confidence (larger
αi) gives tighter keypoint uncertainty sets, which in turn contain fewer poses. The mode of
the distribution is contained in the tightest keypoint uncertainty sets which still contain at
least one pose. The following proposition formalizes this intuition.

Proposition 4.2.1 (Most Likely Pose). The most likely pose under the pose uncertainty sets
Pp(α) is given by the solution to the following optimization problem.

min
t∈R3, R∈SO(3)

α∈[0,1]N

N∑
i=1

αi

s.t. (t,R) ∈ Pp(α)

(4.5)

Proof. For ground truth translation tgt and orientation Rgt, Proposition 4.1.1 gives:

P [(tgt,Rgt) ∈ Pp(α)] ≥ 1−
N∑
i=1

αi (4.6)

Allowing αi to vary between 0 and 1 for i = 1, ..., N and maintaining the constraints Pp(α),
the most likely pose (i.e., the mode) maximizes the quantity 1−

∑N
i=1 αi. Dropping constants

in the objective, we arrive at the minimization problem (4.5).

While compact, (4.5) is difficult to solve in practice because it requires explicitly com-
puting uncertainty bounds for each keypoint at a variety of confidences. Instead, we approx-
imate the α dependence as a linear multiplier (see Fig. 4.2 for intuition). That is, for fixed
confidence α̃:

ri(αi) ≈ αiri(α̃) ≜ αiri (4.7)

By adopting this model we sacrifice statistical guarantees for our estimate of the most
likely pose. However, the model is not unreasonable. Larger αi leads to larger sets, and
smaller αi leads to smaller sets. Importantly, this model has some dependence on the choice
of fixed confidence α. Adopting this model, we can rewrite the most likely pose problem
as a polynomial optimization problem, which is amenable to both local optimization [78]
and semidefinite relaxation [79]. We call the most likely pose problem with approximated
confidence dependence the central pose problem.
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Figure 4.2: Multiplicative approximation of conformal sets. We approximate the
conformal prediction uncertainty bounds, which vary by confidence α, by multiplying by the
radius at fixed confidence by a constant γ > 0. Left, the true conformal sets about a keypoint
at confidences 0.1, 0.3, 0.5, and 0.7. Right, the conformal set at confidence 0.1 multiplied by
the equally-spaced constants 1, 0.7, 0.4, and 0.1. The approximation is crude, but captures
the behavior for moderate α and signficantly simplies computation. It is particularly bad as
α approaches 0 or 1.

4.2.1 Convex Relaxation

As in Chapter 3, we solve the central pose problem using a semidefinite relaxation. To
proceed, we consider the p = ∞ and p = 2 cases separately. The p = ∞ case reduces to
a quadratically-constrained linear program which may be solved using Shor’s relaxation as
reviewed in Section 2.1. The p = 2 case is a quartically-constrained linear program and thus
requires more advanced tools. In practice, we solve both using the sparse moment sum-of-
squares hierarchy [79]. Although the relaxation is not tight in practice, the relaxation often
provides a good initial guess to a local solver.

For p =∞, the central pose is given by the solution to the following optimization problem:

min
t∈R3, R∈SO(3)

γ∈[l,u]N

N∑
i=1

γi

s.t.
∥∥(yiê

T
3 − I3)K(Rbi + t)

∥∥
∞ ≤ γiriê

T
3K(Rbi + t),

ê3 ·K(Rbi + t) > 0, i = 1, ..., N

(4.8)

Note that eq. (4.8) has a linear objective with quadratic inequality constraints (γiR and
γit) and quadratic equality constraints (R ∈ SO(3)). Thus, it is a non-convex problem which
directly admits a convex semidefinite relaxation as described in Section 2.1. In practice, we
first solve the relaxed convex program with a first-order relaxation formulated in TSSOS [79].
After obtaining a solution to the relaxed problem (a lower bound fsdp on the optimal objective
f⋆), we use Ipopt [78], a local nonlinear solver, to obtain an upper bound flocal and feasible
solution. This gives a suboptimality gap g:

g =
flocal − fsdp

max(1, |flocal|)
(4.9)
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When the gap is small (less than 10−3) it serves as a certificate of global optimality. When
the gap is large we have converged to a local stationarity point which may or may not be
globally optimal. In practice, we rarely observe a small optimality gap. To bound γ, we find
l = 0.01 and u = 10 to work well in practice.

We use a similar approach for p = 2, except we must resort to a second-order relaxation.
The central pose is given by the solution to the following optimization:

min
t∈R3, R∈SO(3)

γ∈[l,u]N

N∑
i=1

γi

s.t.
∥∥(yiê

T
3 − I3)K(Rbi + t)

∥∥2
2
≤
(
γiriê

T
3K(Rbi + t)

)2
,

ê3 ·K(Rbi + t) > 0, i = 1, ..., N

(4.10)

Eq. (4.10) has biquadratic inequality constraints in addition to the quadratic equality con-
straints R ∈ SO(3). Thus, we require a second-order convex relaxation. We use TSSOS [79]
to formulate the relaxation and exploit term sparsity for speed. As before, we use Ipopt for
a local solution and to obtain an optimality gap. The solution to this problem is rarely tight
in practice, making the relaxation largely useful for obtaining a good initial guess for the
local solver.

4.3 Pose Uncertainty Bounds
In addition to a pose estimate we seek a numerical representation of pose uncertainty in the
form of explicit angular and translational bounds. In this section, we convert the implicit
pose uncertainty set (Pp) into a single ellipsoidal constraint centered at the pose estimate
from Section 4.2. This ellipse is amenable to a simple projection scheme for translation
bounds and a tight semidefinite relaxation for axis-aligned angular bounds. The simplicity
of this approach stands in contrast with the sampling-based inner approximation in [24] and
the computationally expensive outer approximation which uses a third-order sum-of-squares
relaxation in [25].

Throughout this section we will consider only the p = 2 case. We find the p = ∞ case
fails to solve without explicitly including additional implied quadratic constraints; we leave
exploration of this to future work.

4.3.1 Quadratic Form of Pose Uncertainty Set

Unlike the previous section, we seek uncertainty bounds at a fixed confidence α = α̃1N .
We begin by writing the pose uncertainty set (P2) as a set of quadratic constraints. Let
r ≜ vec(R) ∈ R9, where the vec operator stacks the columns of R. The constraint R ∈
SO(3) may be written as 15 equality constraints which are quadratic in r; see Section 2.1
and Appendix B.1. Observe that the product KRbi = (bT

i ⊗ K)r, where ⊗ denotes a
Kronecker product. Thus, the chirality constraints (FoC) are linear in (r, t) and the 2-norm
backprojection constraints (BP2) are quadratic in the variables. Below we derive the explicit
quadratic forms.
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Let x ≜ [r, t, 1]T ∈ R13. The chirality constraints (FoC) can be written as:

(FoC)i ⇐⇒ xT

[
0 di

dT
i 0

]
x < 0 (4.11)

where the vector di is given by di ≜ −
[
êT3 (b

T
i ⊗K) êT3K

]T ∈ R12 for i = 1, ..., N .
Similarly, the 2-norm backprojection constraints (BP2) can be rewritten as:

(BP2)i ⇐⇒ xT

CT
rCr CT

rDt

DT
t Cr DT

t Dt
0

0 0

x ≤ 0 (4.12)

where we define the following constant matrices, recalling ri ≜ ri(α̃):

Cr ≜

[
(I3 − yiê3)(bi ⊗K)

riê
T
3 (bi ⊗K)

]
∈ R6×9 and Dt ≜

[
(I3 − yiê3)K

riê
T
3K

]
∈ R6×3 (4.13)

Thus, we can rewrite (P2) with constraints in their quadratic form: x ∈ R13

x13 = 1

∣∣∣∣∣
xTQkx = 0, k = 1, ..., 15 (R ∈ SO(3))
xTAjx ≤ 0, j = 1, ..., N (BPp)
xTBix ≤ 0, i = 1, ..., N (FoC)

 (4.14)

The matrices Ai and Bi can be read from (4.12) and (4.11), respectively.

4.3.2 Reduction to a Single Bounding Ellipse

We now reduce (4.14) into a single ellipsoidal constraint centered at the central pose estimate.
Let x̄ ≜

[
r̄T t̄T 1

]T denote the central pose estimate obtained in Section 4.2. We seek a
bounding ellipse of the form: [

r− r̄
t− t̄

]T
H

[
r− r̄
t− t̄

]
≤ 1 (4.15)

The size and shape of the ellipse is defined by the unknown matrix H ≻ 0. Notice that (4.15)
can also be written in quadratic form similar to (4.14):

(4.15) ⇐⇒ xT

[
H −Hx̄

x̄TH x̄THx̄− 1

]
x ≤ 0 (4.16)

To reduce the pose uncertainty set into a single ellipsoidal constraint, we seek H such
that (r, t) ∈ (P2) =⇒ (4.15). Ideally, we could find H using a convex program and without
simultaneously solving for a value of x. The following lemma is a generalization of the
celebrated S-Lemma [80] and allows us to do just that.

Lemma 4.3.1 (Generalized S-Lemma). Let x ∈ Rn be a vector and W, Yi, Zj ∈ Sn be
symmetric matrices for i = 1, ..., N and j = 1, ...,M . For the following statements,
(i) =⇒ (ii):
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(i) There exists µ ∈ RM and λ ∈ RN , λi ≥ 0 ∀ i such that W ⪯
∑N

i=1 λiYi +
∑M

j=1 µjZj.

(ii) xTYix ≤ 0 for i = 1, ..., N and xTZjx = 0 for j = 1, ...,M =⇒ xTWx ≤ 0.

Proof. Take the quadratic form of (i) with x:

xTWx ≤
N∑
i=1

λix
TYix+

M∑
j=1

µjx
TZjx (4.17)

For non-negative λ and under the conditions of the left hand side of (ii), the result holds.

To obtain a bounding ellipse, we only need to find H which satisfies statement (i)
of Lemma 4.3.1. Matching to the lemma, let W be the constant matrix in (4.16) which
includes the unknown matrix H. Let the inequality matrices Yi correspond to the chirality
and backprojection constraints Ai and Bi, i = 1, ..., N . Lastly, let the equality matrices
Zj be the 15 equalities Qj which constrain R ∈ SO(3). This result is summarized in the
following proposition.

Proposition 4.3.2 (Bounding Ellipsoid). An outer bounding ellipsoid for the set (4.14) is
given by the solution to the following convex optimization problem.

max
H∈S12,H⪰0
λ∈R2N ,µ∈R15

log det(H)

s.t.

[
H −Hx̄

x̄TH x̄THx̄− 1

]
⪯

N∑
i=1

λiAi +
N∑
i=1

λN+iBi +
15∑
k=1

µkQk,

λi ≥ 0, i = 1, ..., 2N

(4.18)

The maximizer H⋆ defines an ellipse centered at x̄ as in (4.15).

The proof follows directly from Lemma 4.3.1. Notice that the bounding ellipse is a
relaxation of the implicit pose uncertainty set (P2). Crucially, the problem is convex and
thus may be solved efficiently. The objective log det(H) in (4.18) seeks the minimum volume
ellipse which encloses (P2). When solved to optimality (4.18) gives the tightest bounding
ellipse which also satisfies statement (i) of Lemma 4.3.1. This is not the same as the tightest
bounding ellipse, since that ellipse may not have a representation consistent with statement
(i). In Section 4.4 we show the ellipse generated by Proposition 4.3.2 is empirically accurate
and reasonably tight.

4.3.3 Explicit Rotation and Translation Bounds

Recall that the primary motivation for reducing (P2) to a single bounding ellipsoid constraint
was to obtain explicit uncertainty bounds in rotation and translation. The ellipse (4.15) is
still difficult to interpret as an explicit uncertainty set because it is joint in the rotation
and translation vectors. Fortunately, its compactness makes it amenable to marginalization
via projection into a translation and rotation ellipse which are each interpretable as explicit
uncertainty bounds.
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To obtain translation bounds we project H onto its last three coordinates via orthogonal
projection. Define the projection matrix Pt =

[
03×9 I3

]
. The set of translations t ∈ R3

satisfying (P2) also satisfy the following ellipse.

(t− t̄)THt(t− t̄) ≤ 1 with Ht ≜
(
PtH

−1PT
t

)−1 (4.19)

We observe that the ellipse (4.19) is directly interpretable as Euclidean error bounds on
the translation. This marginalization scheme is simple but somewhat crude; it does not
enforce SO(3) constraints on the first 9 coordinates of the original ellipse H. In Section 4.4
we observe that this set is particularly loose along the optical axis of the camera and expands
to include the camera origin.

Projecting the full ellipse onto the rotation vector proceeds similarly. Let Pr =
[
I9 09×3

]
be the projection matrix onto the first 9 coordinates of H. Any rotation r = vec(R)
in (P2) obeys the following ellipsoidal constraint.

(r− r̄)THr(r− r̄) ≤ 1 with Hr ≜
(
PrH

−1PT
r

)−1 (4.20)

Unlike the translation ellipse (4.19), it is not clear how to interpret this ellipse over
rotations as explicit angular bounds for the maximum rotation about the x, y, and z axes.
A simple solution is to pose three additional rotation-constrained optimization problems that
solve for explicit bounds. This result is summarized in the following proposition.

Proposition 4.3.3 (Explicit Angular Bounds). Let Rj(θj) be the rotation by angle θj about
the x, y, or z axes for j = 1, 2, 3 respectively. Assume θj < π/2 for j = 1, 2, 3 under (4.20).
The maximum angular deviation from R̄ under the constraint (4.20) about axis j is given by
the solution to the following problem:

min
θj∈[−π

2
,π
2
]

cos(θj)

s.t.
[
vec(Rj(θj)R̄− R̄)

]T
Hr

[
vec(Rj(θj)R̄− R̄)

]
≤ 1,

Rj(θj) ∈ SO(3)

(4.21)

We remark that Proposition 4.3.3 is a non-convex optimization problem. Fortunately,
it admits a convex relaxation through a simple reparameterization. Noting that cos(θj) ≥
0 =⇒ θj ∈ [−π

2
, π
2
], replace the angular dependence with sines and cosines. For axis-aligned

rotations, the matrix Rj(θj) requires only two variables and is subject to a single constraint.
The result is a linear objective with quadratic constraints, where only the rotation constraints
introduce non-convexity. We write this explicitly for j = 1 below.

min
cos(θ1)≥0
sin(θ1)

cos(θ1)

s.t.
[
vec(R1(θ1)R̄− R̄)

]T
Hr

[
vec(R1(θ1)R̄− R̄)

]
≤ 1,1 0 0

0 cos(θ1) − sin(θ1)
0 sin(θ1) cos(θ1)

 = R1(θ1),

cos2(θ1) + sin2(θ1) = 1

(4.22)
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We solve this reduced problem using Shor’s relaxation (see Section 2.1) for j = 1, 2, 3,
giving three symmetric angular uncertainty bounds. The semidefinite relaxation is fast and
empirically tight; thus, it gives guaranteed upper bounds on the maximum angular deviation
from R̄ satisfying (P2). Due to the relaxation to a bounding ellipse we have no guarantees
of tightness.

We conclude with two remarks. To obtain explicit angular bounds we require the as-
sumption θj ∈ [−π

2
, π
2
]. We argue this assumption is not too limiting, since angular bounds

greater than 90 degrees are not very useful in practice. In particular, the bounding approach
we propose is not designed to handle multimodal pose distributions. Secondly, the reader
may question the need for a bounding ellipse. The key utility lies in simplifying the pose
uncertainty constraints before solving for a rotation and translation. In our experience, solv-
ing for explicit bounds with just the constraints (P2) either does not solve to optimality or
does not achieve tightness. Either scenario results in an uncertainty bound which may not
capture the full extent of the set.

4.4 Experiments
In this section we evaluate our pose estimation and uncertainty algorithms on the LineMOD-
Occluded (LM-O) dataset [81]. We begin by describing our measurements and the conformal
prediction procedure for obtaining high-probability uncertainty bounds. Section 4.4.1 also
validates the empirical coverage of keypoints and poses. Next, we compare our central pose
algorithms at two different confidences against other monocular pose estimation procedures.
Finally, in Section 4.4.3 we compare the tightness of our angular and translational uncertainty
bounds against prior work [25]. We also give a breakdown of the runtimes of each component
of our method.

4.4.1 Keypoint Bounds and Empirical Coverage Results

Our algorithms take as input a set of pixel keypoint detections yi and associated uncertainty
bounds ri(α). To detect keypoints, we use the heatmap-based convolutional neural network
from [8] and a manually-defined 3D keypoint library. This network was trained on the BOP
synthetic image split [82]. Like [3], we use the highest-confidence pixel in the heatmap as a
detection and the associated confidence as confidence score.

The keypoint uncertainty bounds ri(α) come from split conformal prediction, reviewed
in detail in Section 2.2. We calibrate on the 200 real images comprising the BOP subset [83].
Although this violates the assumptions of Theorem 2.2.1 since the test images include cali-
bration images, we use this calibration for fairness with [3]. For each keypoint i in each image,
denote the detection yi and the confidence ci ∈ [0, 1]. Let zi ≜

K(Rbi+t)
ê3·K(Rbi+t)

be the ground
truth pixel coordinate as in (4.1). For conformal prediction, we use a confidence-weighted
score function:

s((yi, ci), zi) = ci∥yi − zi∥p (4.23)

Let r̃i(α) be the 1−α quantile of the scores of keypoint i on all the calibration images (note
that r̃i(α) is only computed once per keypoint). The keypoint uncertainty bound is given by
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Table 4.1: Coverage Percentages for 2-Norm Pose Uncertainty Set

α = 0.1 α = 0.4

N keypts (P2) ellipse keypts (P2) ellipse
Calibration S R S R R S R S R R

ape 9 46.1 90.5 2.2 62.5 87.3 22.8 59.2 0.1 10.3 36.1
can 8 67.4 90.6 10.5 59.2 91.0 24.7 59.6 0 6.4 37.3
cat 10 67.2 91.0 8.9 57.9 83.4 36.7 61.4 0.1 5.0 30.3

duck 9 36.5 90.7 1.5 71.1 88.5 15.2 60.3 0 15.3 46.5
driller 11 71.3 89.9 16.2 58.7 85.6 27.9 58.9 0.2 6.8 32.6

eggbox 9 22.3 90.6 1.4 58.4 96.3 9.7 61.6 0.2 22.7 66.8
glue 10 47.3 88.8 1.6 56.8 85.6 15.8 56.0 0.6 7.2 32.8

holepuncher 10 50.1 87.8 1.1 41.0 79.6 21.2 57.9 0.1 3.8 19.4

average 51.0 90.0 5.7 58.0 87.2 21.8 59.4 0.1 9.6 37.6

ri(α) ≜ r̃i(α)/ci. Under Theorem 2.2.1, the high-probability error bound (4.2) holds when
calibration data is exchangeable with evaluation data.

As a heuristic for evaluating exchangeability, we compute the coverage of the ground
truth keypoints in each keypoint uncertainty set. We also compute coverage of the ground
truth pose in both the propagated pose uncertainty set (P2) and the bounding ellipsoid (4.15)
(more details in Section 4.4.3). The former roughly quantifies the probability β in Proposition
4.1.1. Coverage is defined as the percentage of keypoints (or poses) with uncertainty sets
that contain the ground truth keypoint (or pose). Due to the inaccuracy of hand-labeled
ground truth poses, this is not a perfect measure of exchangeability.

The results are given in Table 4.1 for p = 2. We compare coverage for calibration on
freshly generated synthetic data (S) from physically-based rendering [72] and real calibration
(R) at confidence 0.1 and 0.4. For each object we report the mean over all frames. It is
immediately clear that the synthetic data is not exchangeable with the real LM-O images.
While the real calibration data achieves near-perfect keypoint coverage, coverage of synthetic
data varies widely and is far below 90% or 60%. We caution that LM-O ground truth poses
are known to be imperfect [3]. Small errors in pose are magnified when propagated to
keypoints.

More interestingly, Table 4.1 shows the pose uncertainty set suffers a 30 − 45% drop
in coverage compared to keypoints. There are 8 − 11 keypoints per object, rendering the
worst-case bound 1 − Nα (Proposition 4.1.1) useless or nearly useless. The pose coverage
is slightly better than the independence case, suggesting our bounds benefit from some
correlation between the keypoints. We provide keypoint and pose uncertainty set calibration
results for p =∞ in Appendix B.2.

Lastly, we note that the ellipse uncertainty set is not overly conservative. For α = 0.1,
it achieves just under 90% coverage. The ellipse is a little tighter for α = 0.4, but in both
cases coverage does not vary too much across objects. This suggests the ellipse is a useful
measure of uncertainty. We provide quantitative and qualitative uncertainty bound results
in Section 4.4.3.
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Table 4.2: Percentage of 2D Projection Errors Under 5 Pixels (LM-O Dataset)

α = 0.1 α = 0.4

Tekin PoseCNN Oberweger PVNet RANSAG OURS2 OURS∞ RANSAG OURS2 OURS∞
[84] [73] [85] [86] [3] [3]

ape 7.01 34.6 69.6 69.1 77.7 77.6 77.0 79.5 76.6 76.4
can 11.2 15.1 82.6 86.1 73.4 19.2 82.2 75.4 69.9 81.3
cat 3.62 10.4 65.1 65.1 87.4 77.8 71.1 90.6 77.8 73.7

duck 5.07 31.8 61.4 61.4 82.7 80.7 79.0 83.1 80.5 76.9
driller 1.40 7.4 73.8 73.1 79.3 65.3 64.6 82.5 66.2 64.3

eggbox 1.9 13.1 8.43 0 0 4.8 0 0.1 4.5
glue 4.70 13.8 54.9 55.4 56.5 1.5 55.9 71.1 8.0 55.7

holepuncher 8.26 23.1 66.4 69.8 81.7 7.0 76.0 82.9 48.5 74.0

average 6.16 17.2 60.9 61.1 67.3 41.1 63.8 70.7 53.5 63.4

4.4.2 Central Pose Results

We evaluate the accuracy of our central pose estimate (Section 4.2) against four learning-
based pose estimators and the averaged pose estimate from RANSAG [3]. Recall that none of
these estimates come with statistical guarantees; at best, our estimate and the RANSAG pose
estimate inherit guarantees from their respective uncertainty bounds. For each method we
report the five-pixel 2D projection error metric [81]. The 2D projection error first projects the
vertices of the relevant 3D model into pixel space, transforming according to the ground truth
pose or estimated pose. The 2D projection error for each frame is the average ℓ2 distance
(in pixel space) between these projected vertices. The five-pixel metric is the percentage of
images for which 2D projection error is less than 5 pixels.

The results are shown in Table 4.2. Our approach with p =∞ outperforms the learning-
based methods on average, but falls of short of conclusively outperforming RANSAG [3]
except for a few objects1. This reflects the poor worst-case performance of our central pose
algorithms. When the local solver fails to solve, we return a bad estimate of the pose of
the object. In contrast, the RANSAG algorithm [3] uses the minimal solver P3P [87] to
sample from the pose uncertainty set and simply averages these samples, even if it fails to
find any points with the pose uncertainty set. Despite the simplicity of our approach, it is
not significantly worse than RANSAG [3].

Table 4.2 also highlights a discrepancy between the 2-norm approach and ∞-norm ap-
proach for finding the central pose. The∞-norm has consistently better 2D projection error,
and the 2-norm can give very poor results when the uncertainty sets are large (α = 0.1).
This is likely the result of the quartic constraints on the central pose problem with p = 2,
which require a second-order relaxation and are more difficult for the local solver to refine.
Additionally, the ∞-norm results are similar at each confidence level. This suggests our
multiplicative approximation of keypoint uncertainty sets at different confidences (Section
4.2) is reasonably accurate for p =∞.

We note that our central pose approach is real time, achieving about 100 ms runtimes on
1We note that the eggbox object was observed to have particularly bad keypoint detections and ground

truth annotations, leading to poor performance [3].
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(a) CDF of translation bounds on LM-O. We
show the half-length of the first and second
principal axes of our marginalized ellipse.

(b) CDF of rotation bounds on LM-O. For
our approach, we give angular bounds about
the x, y, and z axes.

Figure 4.3: Tightness of angular and translational bounds. We plot the cumulative
distribution function (CDF) of each approach over all objects excluding the eggbox. Our
translation bounds are looser than baselines along one axis but significantly tighter along
the others. Our rotation bounds are tighter and more interpretable, since they break out
the three principal angles. RANSAG and GRCC results are from [25].

average. We provide more runtime details in Appendix B.2. We also provide additional 2D
projection error results, including calibration on synthetic data, central pose with only the
local solver, and a maximum margin formulation which is fast but biased towards estimates
further from the camera. The central pose approach proposed in Section 4.2 with initial-
ization via convex relaxation attains the best 2D projection error and outperforms the local
solver in runtime.

4.4.3 Uncertainty Bound Results

We use the central pose estimates (p =∞) from the previous section as center for the bound-
ing ellipse procedure proposed in Section 4.3. Unlike the central pose, the bounding ellipse is
guaranteed to outer bound the conformal uncertainty set (P2) at a constant confidence. Here
we show results for α = 0.1 (more conservative) and leave results for α = 0.4 to Appendix
B.2. We compute translation and rotation bounds for every feasible pose estimate excluding
the eggbox object (7586 frames in total).

Fig. 4.3 shows our quantitative results. We plot a cumulative distribution function (CDF)
of the translation and rotation bounds, comparing with results from [25]. The translation
bounds (Fig. 4.3a) are a much looser spherical approximation of uncertainty but are much
tighter along the second and third principal axes (see Appendix B.2 for a CDF which spans
the entire domain of the second axis). This general behavior is expected in the absence
of depth information; however, our bounds along optical axis are overly conservative. Fig.
4.4a shows a translation ellipse for a particular frame; the ellipse is very tight except for the
optical axis, where it expands to include some translation behind the the camera.
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(a) A projection of the uncertainty ellipse
into translation space.

(b) A sample pose estimate projected onto
an image with rotational uncertainty at con-
stant translation highlighted in green.

Figure 4.4: Qualitative bounding sets in rotation and translation space. The pro-
jected translation ellipse (a) is very tight along axes perpendicular to the optical axis but
very loose along optical axis, expanding to include the origin and non-physical translation
behind the camera. The rotations (b) show the relative tightness of the angular bounds
(between 5 and 7 degrees for this frame). Both plots are for the duck object at frame 352 of
the LM-O dataset.

In contrast, our angular bounds (Figure 4.3b) are clearly tighter than prior work. In the 5
to 30 degree uncertainty range all three axes are tighter than RANSAG [3] and GRCC [25].
This is the critical region where angular uncertainty bounds can be useful. Our angular
bounds are also more specific, giving bounds for rotations about each axis. The tighter
z-axis bounds reflect additional certainty for orientation about the optical axis. Projected
onto the image plane, a typical rotation uncertainty set is quite tight. We give an example
of this in Fig. 4.4b and provide more examples in Appendix B.2.

Note that, in contrast to the baselines, we have some angular uncertainty bounds near
zero. This is not a breakdown of tightness; rather, it reflects the conditional coverage prop-
erty of conformal prediction. Some keypoint uncertainty sets are very small and admit only
a few set of possible rotations, even if this does not cover the ground truth pose. The an-
gular problems incorporate a semidefinite relaxation which was consistently tight and fast.
We provide a runtime breakdown in the next section, and a CDF of suboptimality gaps
in Appendix B.2.

Runtime Breakdown

Lastly, we provide a runtime breakdown of our approach to generate uncertainty bounds
in Table 4.3. The main bottleneck is finding a central pose; both the bounding ellipse and
rotation marginalization problems are quite fast in practice. Table 4.3 shows the average
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Table 4.3: Breakdown of Mean Runtimes for Pose Estimation and Uncertainty

α = 0.1 (ms) α = 0.4 (ms)

Keypoint Detection 48.8 48.8
Central Pose (∞) 116.4 90.7
Bounding Ellipse 33.6 49.4

Rotation Marginal 12.1 12.8

Total 210.9 201.7

runtimes over the same 7586 feasible frames used in the previous section. We omit the
translation marginalization since it is sub-millisecond. With the exception of the keypoint
detector, all algorithms are implemented in Julia and run on a single CPU thread with a
clock speed clock speed of 4.2 GHz. The keypoint detector is implemented in PyTorch and
runs on an M3 Mac.

These runtimes are significantly faster than prior work. In particular, the pose estimate
from RANSAG [3] is reported to take less than a second. The authors do not report the
runtime for finding a bounding ellipse using GRCC [25], but the third order semidefinite
relaxation suggests a runtime of greater than one second per frame. Our method is much
faster, finding a bounding ellipse and reducing it to rotation and translation bounds almost
as fast as keypoint detection itself.

4.5 Discussion
This chapter presented a set of algorithms to convert keypoint uncertainty bounds from
conformal prediction into a pose estimate with high-probability uncertainty bounds. Our
pose estimation approach is a relaxation of the mode of the pose uncertainty sets and uses
a semidefinite relaxation to initialize a local solver. To obtain uncertainty bounds, we first
compute an outer bounding ellipse at fixed confidence and marginalize this to translation
bounds via projection and rotation bounds via a tight semidefinite relaxation. In this section
we discuss the limitations of our approach and give directions for future work.

We begin with a comment on the statistical motivation for this work. The relaxation
from a Gaussian noise assumption to bounded noise is primarily a useful way to obtain
high-probability pose uncertainty sets of the form (P2). It is less of a relaxation for pose
estimation because bounded noise is subGaussian [88], meaning tail bounds can be given
using a Gaussian upper bound. For a single confidence bounded noise is both less precise
and less robust than Gaussian noise, completely removing the tails of the distribution and
not capturing concentration phenomena. Noise bounds obtained via conformal prediction
do little to counter the effect of outliers or bad pose estimates.

In light of this, it is not surprising that the pose estimation stage is the weakest part of
our approach. Our formulation is relatively brittle in the presence of outliers and is highly
dependent on the accuracy of keypoints. This is most clear in the difference between the
α = 0.1 and α = 0.4 results in Table 4.2; the method struggles with larger uncertainty sets
(α = 0.1) even though it should be, to first order, invariant to changes in scale of the sets.
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For better pose estimates, future work should include explicit consideration of outliers (or at
least some tail probabilities). It may also be possible to derive an estimator that maximizes
the subGaussian distribution bounds instead of the union bound probability.

In contrast, our approach for propagating uncertainty from keypoints to poses is much
more effective. The bounding ellipse problem is fast and marginalizing to rotation bounds
is empirically tight. The propagated bounds also maintain the high-probability keypoint
uncertainty bounds from conformal prediction, although they may not be as tight; future
work may quantify the relative volume of the pose uncertainty set and the reduced ellipse.
In particular, the translation bounds are very loose along the optical axis. More work is
needed to obtain a tight scale estimate in the absence of depth information.

It is important to mention that our pose bounds hold with some unknown probability
less than 1− α, where α is the keypoint conformal confidence. Empirically they satisfy the
independence bounds and not just the worst-case union bounds, but this is an additional
assumption. An alternative approach would be to conformalize some pose estimator directly
using a conformal score. This would immediately yield high-probability bounds, and be much
more independent of the pose estimate. However, we caution that conformalizing directly is
not a panacea, and propagating uncertainty sets as we do in Section 4.3 can be useful. In
some problem instances there may only be ground truth for some measurement and not the
quantity of interest.
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Chapter 5

Sub-Millisecond Solutions to
Category-Level Shape and Pose
Estimation

The certifiably optimal algorithms presented in the previous sections are fast enough to run
near real-time, but they cannot be run at extremely high rates, especially on compute-limited
hardware. In some cases it is more beneficial to have a fast local solver. This is the pri-
mary focus of this chapter. We explore a fast local solver for the single-frame shape and
pose estimation problem under category-level priors. We begin with the problem formula-
tion in Section 5.1, which is a single-frame version of the problem considered in Chapter
3. In Section 5.2 we reformulate the problem into a quartic objective using the quaternion
representation of rotations. This admits first order conditions which are a nonlinear eigen-
value problem with eigenvector nonlinearities. We solve this eigenproblem efficiently using
self-consistent field iteration [89], which requires only finding the eigenvector corresponding
to the minimum eigenvalue at each step. Section 5.3 gives the self-consistent field iteration
algorithm. In Section 5.4 we show this approach has a significant speed advantage compared
to other local solvers including Gauss-Newton [90] and Manopt [91] in synthetically gener-
ated problems, achieving an order of magnitude speedup. We conclude with a discussion of
theoretical gaps and extensions to similar problems.

5.1 Category-Level Shape and Pose Estimation Problem
Given detections of 3D keypoints on an object of known category, the category-level shape
and pose estimation problem is to estimate the shape and pose (position and orientation)
of the object. This section describes the problem formulation, including our choice of shape
representation and measurement model. The problem formulation is identical to the problem
considered in [2], although our solution strategy is substantially different.
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5.1.1 Active Shape Model

We use the same active shape model introduced in Section 3.1, summarized here for clarity.
For each category, we assume a library of K 3D shapes that span the category in the
following sense. For each point xi on an arbitrary category object, xi may be expressed
as a linear combination of corresponding points bk on the objects in the 3D shape library.
Mathematically:

xi =
K∑
k=1

ckbik ≜ Bic (5.1)

where Bi stacks each bik as rows and c defines a linear combination: ck ∈ [0, 1] and
∑K

k=1 ck =
1. It is useful to think of these points as semantically related. For example, within the bottle
category, a point on each shape could be the position of the center of its bottlecap. Refer to
Fig. 3.1b for a visualization of this model.

5.1.2 Measurement Model

We consider the measurements of a sparse set of 3D keypoints yi with known associations
to set of points Bi in the shape library, i = 1, ..., N . These measurements may come from
pixel detections by a learned keypoint detector combined with depth information, and are
typically semantically meaningful.

Denoting the object’s position p and orientation R with respect to some fixed reference
frame (i.e., the camera frame), the detected keypoints yi, i = 1, ..., N obey the following
generative model:

yi = RBic+ p+ ϵi (5.2)

We assume the measurement noise ϵi follows an isotropic Gaussian distribution with zero
mean and known isotropic covariance: ϵi ∼ N (0, w−1

i I3). This assumption can be related to
a truncated normal distribution for outlier rejection using graduated non-convexity [60] or
another outlier-robust wrapper such as RANSAC [92].

We now state the category-level shape and pose estimation problem:

Problem 5.1.1. Estimate the shape c and pose (R,p) of an object from N 3D keypoint
measurements with known category-level associations.

5.2 Nonlinear Eigenproblem for Local Minima
In this section we write Problem 5.1.1 as a maximum a posteriori (MAP) optimization prob-
lem. We show the optimization can be reduced to unconstrained optimization on the SO(3)
manifold via convex marginalization. We conclude by expressing the first order optimality
conditions of the rotation estimation problem as a nonlinear eigenproblem with eigenvector
nonlinearities. This reformulation is novel compared to [2], and requires a slightly different
marginalization.
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Under model (5.2) the measurements yi are generated according to the following likeli-
hood:

P(yi|R, c,p) ∝ exp
(
−wi

2
∥yi −RBic− p∥2

)
(5.3)

Let us also introduce a prior on the shape coefficient c ∼ N (0, λ−1IK), which will regu-
larize the problem when there are more shapes than measurements:

P(c) ∝ exp

(
−λ

2
∥c∥2

)
(5.4)

In this setting we arrive at the following estimator.

Proposition 5.2.1 (MAP Shape and Pose Estimator). The maximum a posteriori estimator
that solves Problem 5.1.1 is given by:

min
R∈SO(3)

p∈R3, c∈RK

N∑
i=1

wi∥yi −RBic− p∥2 + λ∥c∥2

s.t. 1Tc = 1, c ∈ [0, 1]K

(5.5)

Proof. The objective minimizes the negative log likelihood, given by:

ℓ(R, c,p|yi) = − log (P(yi|R, c,p)P(c)) (5.6)

Where we used Bayes rule and removed the constant in the denominator. The expressions
for the conditional and prior probabilities are given by (5.3) and (5.4) respectively.

In the following we will relax the problem by dropping the constraint c ∈ [0, 1]K .

5.2.1 Reduction to Rotation Estimation Problem

We now perform convex analytic elimination to solve for position p⋆ and shape c⋆ in (5.5) as
closed form functions of the optimal rotation. Unlike [2], we avoid vectorizing the rotation
R.

Holding R and c constant, (5.5) is an unconstrained convex quadratic problem in p.
Thus, first order conditions give the optimal position as a function of R and c.

Proposition 5.2.2 (Optimal Position). The optimal position solving (5.5) is given by:

p⋆(R, c) = ȳ −RB̄c (5.7)

where ȳ and B̄ are weighted averages of yi and Bi as below:

ȳ ≜

∑N
i=1wiyi∑N
i=1 wi

and B̄ ≜

∑N
i=1 wiBi∑N
i=1wi

(5.8)
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Proof. The first order optimality conditions are necessary and sufficient. In the uncon-
strained case the first order conditions are 0 = ∇p(

∑N
i=1 wi∥yi −RBic− p∥2). Simplifying,

N∑
i=1

wip
⋆ =

N∑
i=1

wi(yi −RBic) (5.9)

The result follows from solving for p⋆.

We now plug in the optimal value for p as given by (5.7). Letting ȳi ≜ yi − ȳ and
B̄i ≜ Bi − B̄, eq. (5.5) simplifies to:

min
R∈SO(3)

c∈RK 1Tc=1

N∑
i=1

∥ȳi −RB̄ic∥2 + λ∥c∥2 (5.10)

We now solve for the optimal shape vector as a function of the rotation c⋆(R). Eq. (5.10)
is convex in c because the objective is quadratic and the constraints are linear equalities.
Thus, the KKT conditions are necessary and sufficient for the optimal shape vector. The
result is summarized in Proposition 5.2.3 below.

Proposition 5.2.3 (Optimal Shape). The shape vector that optimally solves (5.10) is:

c⋆(R) = C1

N∑
i=1

(
B̄T

i R
Tȳi

)
+ c2 (5.11)

where we use the following symbols:

B̂2 ≜
∑N

i=1 B̄
T
i B̄i ∈ RK×K

H ≜ B̂2 + λIK ∈ RK×K

C1 ≜ H−1 −H−11K

(
1T
KH

−11K

)−1
1T
KH

−1 ∈ RK×K

c2 ≜ H−11K

(
1T
KH

−11K

)−1 ∈ RK

(5.12)

We note that B̂2 is invertible as long as there are N ≥ 3 non-colinear keypoints and N > K.
The λ term regularizes the problem to ensure invertibility when the latter condition is violated,
i.e., when N ≤ K.

The proof of Proposition 5.2.3 is algebraically involved and postponed to Appendix C.1.
The key idea is to use the KKT conditions for (5.10) to write a linear system for c where
only a known constant matrix needs to be inverted.

We now state the rotation estimation problem which, together with the shape (5.11) and
position (5.7) formula, solves Problem 5.1.1.

min
R∈SO(3)

N∑
i=1

∥∥∥∥∥ȳi −RB̄i

(
C1

N∑
j=1

(
B̄T

j R
Tȳj

)
+ c2

)∥∥∥∥∥
2

+ λ∥C1

N∑
j=1

(
B̄T

j R
Tȳj

)
+ c2∥2 (5.13)

Note that (5.13) is an optimization problem over only a single rotation with no constraints
beyond the SO(3) manifold. Further, it is quadratic in the unknown matrix R. In Section
5.3 we present a method which finds first order stationary points of (5.13) that relies on both
of these properties.
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5.2.2 First Order Conditions in Terms of Quaternions

In contrast to [2] we refrain from writing (5.13) as a quadratic program in vec(R), where
vec vectorizing a matrix by stacking its columns. Instead, we rewrite the problem as a
quartic objective with a quadratic equality constraint using quaternions. As we will see, this
quaternion formulation leads to first order conditions which are a nonlinear eigenproblem.
Throughout this section we use the quaternion algebra reviewed in Section 2.3.

Begin by expanding the objective of (5.13), grouping terms by their dependency on R.

(5.13) = min
R∈SO(3)

{
N∑
i=1

(ȳT
i ȳi) + cT2 B̂

2c2 + λcT2 c2

}
(5.14)

+

{
N∑
i=1

2ȳT
i RB̄i

(
−I3 +C1B̂

2 + λC1

)
c2

}

+

{
N∑
i=1

ȳT
i RB̄iC1

(
−2I3 + B̂C1 + λC1

) N∑
j=1

B̄T
j R

Tȳj

}
Now, drop the constant terms and rewrite the objective in terms of the unit quaternion q

which denotes the rotation represented by R. We use the identity (2.25) and drop the tilde
notation for homogeneous vectors; all vectors in R3 are assumed to be homogenized with 0
as the scalar part; see Section 2.3.

(5.13) = min
q∈S3

{
2qT

N∑
i=1

Ω2(ȳi)Ω1

[
B̄i

(
I3 −C1B̂

2 − λC1

)
c2

]
︸ ︷︷ ︸

≜D

q

}
(5.15)

+

{
qT

N∑
i=1

Ω2(ȳi)Ω1

[
B̄i

(
2I3 −C1B̂

2 − λC1

)
C1

N∑
j=1

B̄T
j R

T(q)ȳj

]
︸ ︷︷ ︸

≜A(q)

q

}

More compactly,
(5.13) = min

q∈S3
qTA(q)q+ 2qTDq (5.16)

We observe the following properties of (5.16). First, the objective contains a quadratic
and a quartic term. The constant matrix of the quadratic term D is symmetric by the inverse
property given in Lemma 2.3.1. The quartic term is also symmetric in the sense that the
matrix to quaternion identity (2.25) gives the same result when applied to either rotation.
Both D and A(q) have zero trace.

Under the unit norm constraint eq. (5.16) trivially satisfies the linear independence
constraint qualification. Thus, the set of stationary points are given by the first order
conditions. We use the product rule for objective terms and µ ∈ R as a dual variable for the
unit norm constraint. Stationary points of (5.16) occur when:

0 = 4A(q)q+ 4Dq− µq (5.17)
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Figure 5.1: Stereographic projections of self-consistent field iterates. Beginning from
a unit quaternion q0 ∈ S3, SCF rapidly converges to a local stationary point. Left, a single
SCF trajectory. Right, two views of unit quaternions stereographically projected into the
volume of the 3-dimensional unit ball (see Appendix C.2) and colored by the local minimum
SCF converges to. Nearby starting points tend to converge to the same local minimum
except at the distinct boundary. Plots show synthetic data with high measurement noise
(σm = 5).

Eq. (5.17) resembles an eigenvalue problem, with one summand A(q) having eigenvector
dependence. This result is summarized in the following proposition.

Proposition 5.2.4 (Eigenproblem for Local Solutions). All local minima q of (5.13) satisfy
the following nonlinear eigenproblem for some µ ∈ R:

(A(q) +D)q = µq (5.18)

Several remarks are in order. While it is not immediately clear how to solve (5.18),
Section 5.3 will develop a fast iterative solver that only requires computing A(q) ∈ R4

and its smallest eigenvalue-eigenvector pair at each iteration. When λ = 0, computing the
matrices A(q) and D requires even less computation. Apart from the obvious simplifications,
λ = 0 implies C1B̂

2c2 ≡ 0. Lastly, in the interest of global solutions, observe the objective
value at a given stationary point is a perturbation of µ by the constant matrix D:

flocal = µ+ qTDq (5.19)

We discuss global optimality further in Section 5.5.

5.3 Iterative Method for Fast Local Solutions
Proposition 5.2.4 gives a compact necessary condition for local minima. In this section we
propose a fast solution strategy for (5.18) using self-consistent field iteration [93–95].
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5.3.1 Self-Consistent Field Iteration

Self-consistent field (SCF) iteration is a solution strategy for nonlinear eigenproblems such
as (5.18). SCF starts from an initial guess and computes the corresponding data matrix
A(q) + D. Then, the estimated q is updated to an eigenvector of the data matrix. The
algorithm terminates when it converges to a stationary point–a unit vector q which exactly
satisfies (5.18). In practice, we terminate using the angle between the current and next
iterate.

Data: A(q) and D from (5.15)
Result: q satisfying (5.18)
initialize q0

for t← 1 to T do
qt+1 ← argminq∈S3 q

T(A(qt) +D)q

/* termination condition */
if sin∡(qt,qt+1) < ϵ then

q← qt

break
end

end
Algorithm 5.1: Self-consistent field iteration for local solutions to (5.16).

The full algorithm is given in Algorithm 5.1 and illustrated in Fig. 5.1. We update
q according to the eigenvector corresponding to the minimum eigenvalue. Although we
could pick any of the eigenvectors, picking the smallest has several desirable properties.
First, it is likely to be a local minima (rather than a saddle point or local maxima) since the
objective at stationary points is dominated by the eigenvalue, see (5.19). Second, it has strong
computational benefits. In particular, the minimum eigenvalue is often the eigenvalue with
largest magnitude at optimality (recall the matrices A(q) and D are not positive semidefinite
and have zero trace). This property enables fast convergence, often less than 5 iterations. For
faster convergence, the termination condition may be relaxed to a near-constant objective
value. This is especially useful in high-noise situations when the objective landscape is very
flat near optima.

The key advantage of our approach is its speed. A single iteration of SCF requires only
computing a 4× 4 matrix and its minimum eigenvector. The termination condition requires
only checking the value of an inner product. In practice, these steps take less than 10 µs on
a single CPU thread. Starting with different initial conditions is easily parallelized across
GPU resources. In Section 5.4 we show the entire algorithm takes about 150 µs with random
data.

5.4 Empirical Performance in Synthetic Dataset
We evaluate the accuracy and computational speed of our approach using synthetic data
in the local and global settings. We generate synthetic data according to the measurement
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model (5.2). First, we generate a mean shape with N points drawn from a standard normal
and centered about their mean. The shape library B is formed by adding zero-mean Gaussian
noise to each point with fixed uniform standard deviation r = 0.2. Then, we generate
a ground truth shape vector c by normalizing a K-dimensional uniformly random vector.
Ground truth position is drawn from a standard normal with mean 1, and ground truth
rotation is drawn uniformly from SO(3). The measurements yi follow model (5.2) with
fixed isotropic variance σ2 = w−1

i . We adopt r as our length scale and normalize all length-
dependent quantities (σ, positions) accordingly. We test with a small shape library (N = 10,
K = 4, λ = 0) and provide some results with a larger shape library in Appendix C.5;
performance is not significantly different. All benchmarks are run on a single CPU thread
with a clock speed of 4.2 GHz.

5.4.1 Baselines

We compare against the local solvers Gauss–Newton (G-N), Levenburg–Marquardt (L-M),
and Manopt [91]. Manopt is an off-the-shelf general-purpose solver for unconstrained prob-
lems on a manifold. We use it to directly solve (5.13). The G-N and L-M solvers are
specialized to the shape and pose estimation problem (5.13) with analytical gradients for a
fair comparison (derived in Appendix C.4). We also compare against SDP, which converts
the QCQP (5.13) into a convex semidefinite program by taking the dual of the dual (reviewed
in Section 2.1). This provides a lower bound on the optimal objective which is empirically
tight for low-noise problems [2], and a zero duality gap certifies the global optimality of the
solution.

We also compare against two ablations of self-consistent field iteration. The SCF-Obj
approach is identical to Algorithm 5.1 except it terminates when the objective value is sta-
tionary. Computing the objective slows down each iteration but may also allow significantly
fewer iterations. Lastly, the Power solver replaces the eigenvector step in SCF with a power
method, a product-based strategy which converges to the dominant eigenvector 1 . At each
iteration, Power updates the estimate by normalizing the product between the data matrix
and the previous estimate, terminating when it reaches a stationary point. The full algorithm
is given in Appendix C.3.

All methods are implemented in Julia and runtimes do not include precompilation time.
In each experiment all methods are tested with the same set of 1000 synthetically-generated
problems for each measurement noise value σm.

5.4.2 Local Solutions

Runtimes

Table 5.1 compares the mean and 90th percentile (p90) of runtimes for each method across
noise scales. The vanilla version of self-consistent field iteration is the fastest method, av-
eraging around 150 µs to find a solution across noise scales. This is more than an order of
magnitude faster than the next-fastest local solver. Performance is similar to SCF-Obj and

1We gratefully acknowledge Aaron Ray for suggesting the power method as a solution strategy.
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Table 5.1: Mean and 90th Percentile of Solver Runtimes

σm = 0.25 σm = 2.5

Method Mean (ms) p90 (ms) Mean (ms) p90 (ms)

SCF 0.146 0.149 0.157 0.169
Manopt 3.211 3.791 2.585 3.672

G-N 2.366 2.887 3.938 4.946
L-M 2.417 2.881 3.790 4.701
SDP 5.687 5.915 5.696 5.907

SCF-Obj 0.179 0.208 0.186 0.211
Power 0.401 0.541 0.383 0.536

more than twice as fast as Power. The sub-millisecond runtime of SCF across noise scales
enables a real-time perception loop with a 1 kHz update or on compute-limited hardware.

Runtime is a function of both number of keypoints N and size of shape library K. We
expect all methods to scale similarly in number of keypoints, but it is not clear how SCF
scales in K. Empirically, we find runtime when K is large to be highly dependent on the
choice of regularization λ. For completeness we provide an analog to Table 5.1 for K > N
in Appendix C.5.

Rotation Estimation Performance

Fig. 5.2 compares SCF against the certifiable global solver SDP and the ablation with ob-
jective termination SCF-Obj. All three methods exhibit similar performance across noise
scales, with SDP achieving slightly lower rotation error at higher noise. The key advantage
of SDP over SCF is the certificate of global optimality. While SCF does not always converge
to the global minimizer (see e.g., Fig. 5.1), it frequently finds a reasonable estimate. Simi-
larly, terminating self-consistent field iteration using the objective (SCF-Obj) does not lead
to significantly different rotation estimates.

For brevity, we omit a direct comparison of performance between the other local solvers.
Apart from L-M they are all guaranteed to reach a first order stationary point. We provide
the equivalent to Fig. 5.2 for a large shape library K > N in Appendix C.5.

5.5 Discussion and Extensions
Section 5.4 gives empirical assurances regarding the behavior of self-consistent field iteration
in solving Problem 5.1.1. However, there are still theoretical gaps regarding its local and
global convergence. Cai et al. [93] consider a matrix-valued eigenvector-dependent eigenprob-
lem and show each eigenvector has a region of attraction; that is, if SCF starts close enough
it will converge to that eigenvector. This theory is presented under a set of assumptions that
are difficult to check without prior knowledge of the stationary points. The authors also show
SCF converges in finite time to the eigenvectors corresponding to the smallest eigenvalues
under the milder condition of a non-zero eigenvalue gap [93]. Some of this theory can be
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Figure 5.2: Distribution of rotation errors for SCF, SDP, and SCF-Obj. We plot the
distributions of rotation error at selected noise scales expressed as multiples of the object
radius. Left, SDP and SCF achieve similar performance across noise scales. Especially at
higher noise scales, SDP performs slightly better on average. Right, SCF-Obj and SCF have
near-identical performance, suggesting objective termination is an effective signal of reaching
a local minimizer.

directly applied to Problem 5.1.1, but more work is needed to give compact conditions for
local convergence.

Additionally, we note that reformulating a quadratic rotation-constrained problem into a
nonlinear eigenproblem for local extrema is not unique to Problem 5.1.1. It may be applied
to similar rotation-constrained problems such as the backprojection form of perspective-n-
point [96].
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Conclusion
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Appendix A

Additional Results and Proofs for CAST⋆

A.1 Maximum A Posteriori Derivation
Here we show that (3.7) is a maximum a posteriori (MAP) estimator. We first restate the
problem:

min
Rt,Ωl∈SO(3),

pt,vl∈R3,
c∈RK ,1T

Kc=1
t=1,...,T,

l=1,...,T−1

s.t.

T∑
t=1

N∑
i=1

wi
t

∥∥yi
t −RtBic− pt

∥∥2 + λ∥∆c∥2

+
T−1∑
t=1

ωt∥∆vt∥2 + κt∥∆Ωt∥2F

pt+1 = f(pt,Rt,Rt+1,vt), Rt+1 = RtΩt

∆vt = vt+1 − vt, ∆Ωt = Ωt+1 −Ωt

(A.1)

where we introduced auxiliary variables ∆vt and ∆Ωt for the velocity changes. We now
show that the first summand in (A.1) corresponds to the likelihood of our keypoint measure-
ments (3.6), while the other terms describe our priors on the shape, velocity, and rotation
rates. Denote the quantities to estimate by z ≜ [c, {pt,Rt}Tt=1, {vt,Ωt}T−1

t=1 , {∆vt,∆Ωt}T−1
t=1 ]

belonging to the domain Z which includes all relevant constraints in (A.1). The MAP esti-
mator takes the form:

argmax
z∈Z

P(z | {yi
t}

N,T
i,t=1) = argmax

z∈Z
P({yi

t}
N,T
i,t=1 | z)P(z) (A.2)

where we expanded using Bayes rule. Assuming independent measurements, shape indepen-
dence, and Markovian time-independence, we can rewrite (A.2) as:

argmax
z∈Z

N,T∏
i,t=1

P(yi
t | z)

T−1∏
t=1

P(∆vt)P(∆Ωt)P(∆c) (A.3)

For the posterior P(yi
t | z) we assume a zero-mean Gaussian with covariance Σi

t = 1
wi

t
I3.

Hence, using (3.6):

P(yi
t | z) = αi

t exp

(
−wi

t

2

∥∥yi
t −RtBic− pt

∥∥2) (A.4)
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with normalization constant αi
t.

Similarly, for velocity and shape we assume a zero-mean Gaussian prior with covariance
1
ωt
I3 and 1

λ
I3 respectively:

P(∆vt) = αv
t exp

(
−ωt

2
∥∆vt∥2

)
(A.5)

P(∆c) = αc exp

(
−λ

2
∥∆c∥2

)
(A.6)

We also assume that the rotation rate follows a Langevin distribution with concentration
parameter κt:

P(∆Ωt) = αo
t exp

(
−κt ∥∆Ωt∥2F

)
(A.7)

where αv
t , αc, and αo

t are suitable normalization constants.
Replacing the maximum of the posterior with the minimum of the negative logarithm of

the posterior and dropping multiplicative and additive constants, we arrive at the result.

A.2 Proof of Proposition 3.2.1: Closed-Form Optimal
Shape

Holding all other variables constant, (3.7) is a linearly constrained least squares problem in
c. Thus, the minimum with respect to c is convex and admits a unique solution via the
KKT conditions. If we drop objective terms that do not depend on c in (3.7), we get:

min
c∈RK ,
1T
Kc=1

T∑
t=1

N∑
i=1

wi
t

∥∥yi
t −RtBic− pt

∥∥2 + λ∥∆c∥2 (A.8)

Expanding the summation over keypoint indices i and moving the weights into the norm:

T∑
t=1

∥∥∥∥∥∥∥

√

w1
t I3
. . .√

wN
t I3


︸ ︷︷ ︸

≜Wt


R

T
t (y

1
t − pt)
...

RT
t (y

N
t − pt)


︸ ︷︷ ︸

≜ht

−

B1
...

BN


︸ ︷︷ ︸

≜B

c


∥∥∥∥∥∥∥
2

+ λ∥∆c∥2
(A.9)

where we used the rotational invariance of the 2-norm to move RT.
We’ll use stationarity and primal feasibility. The Lagrangian is:

L(c, µ) =
T∑
t=1

∥Wt(ht −Bc)∥2 + λ∥∆c∥2 + µ(1− 1Tc) (A.10)

The stationarity condition is:

0 = ∇cL = 2BT

(
T∑
t=1

W2
t

)
Bc− 2BT

(
T∑
t=1

W2
tht

)
+ 2λ∆c+ 1µ (A.11)
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Putting this together with primal feasibility, we arrive at the following linear system:[
H−1 1K

1T
K 0

] [
c
µ

]
=

[
2
(
BT
∑T

t=1W
2
tht + λc̄

)
1

]
(A.12)

where H ≜ 1
2

(
BT
(∑T

t=1 W
2
t

)
B+ λIK

)−1

. The matrix on the left hand side can be inverted
using the Schur complement rule.

Solving for c and substituting the definitions of G and g, we arrive at the result. Crucially,
notice that the matrix we must invert to get H is made up only of constants. Notice that H
is invertible so long as λ > 0 or the number of shapes K is less than the number of keypoints
N .

A.3 Proof of Proposition 3.2.2: Quadratically Constrained
Quadratic Program

We focus on the measurement terms, the constraints, and the variable c. The remaining
objective terms contain norms of single-degree variables and are thus quadratic. The key
idea is to let st ≜ RT

t pt. Then, the measurement term of the objective may be rotated
without changing its norm:∥∥yi

t −RtBic− pt

∥∥2 = ∥∥RT
t y

i
t −Bic− st

∥∥2 (A.13)

Similarly, the optimal solution c∗ may be rewritten as:

c⋆ = 2G

BT
T∑
t=1

Wt

R
T
t y

1
t − st
...

RT
t y

N
t − st

+ λc̄

+ g (A.14)

to complete the changes needed for the objective. Notice that c is a linear function of R and
s. Thus, every term of the objective is quadratic in the new variables st, Rt, vt, Ωt.

Body-Frame Motion Model

For the body-frame motion model, the variable p still remains in the constraint pt+1 =
pt +Rtvt. Multiplying both sides by RT

t :

RT
t pt+1 = st + vt (A.15)

From the rotation rate constraint, Rt+1 = RtΩt ⇒ RT
t = ΩtR

T
t+1. Plugging this in gives the

constraint Ωtst+1 = st + vt as desired.

World-Frame Motion Model

For the world-frame motion model, the change of variables makes the constraint pt+1 =
pt +Rtvt linear. Multiplying both sides by RT

t+1:

RT
t+1pt+1 = RT

t pt + vt =⇒ st+1 = st + vt (A.16)
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A.4 Proof of Proposition 3.2.3: Closed-Form Optimal
Position and Velocity

Holding Rt constant and with the world-frame velocity model, (3.11) is a linearly constrained
least squares problem in rotated position and velocity. Thus, the minimum with respect
to position and velocity is convex and the KKT conditions give a unique solution. The
derivation that follows involves significant algebraic manipulation, but the main ideas follow
the proof in Appendix A.2.

Dropping objective terms and constraints that do not depend on position of velocity, we
have:

min
Rt,∈SO(3),
st,vl∈R3,
t=1,...,T,

l=1,...,T−1

s.t.

T∑
t=1

N∑
i=1

wi
t

∥∥RT
t y

i
t −Bic− st

∥∥2 + λ∥∆c∥2

+
T−1∑
t=1

ωt∥vt+1 − vt∥2

st+1 = st + vt

(A.17)

We rewrite (A.17) in terms of the vectorized forms of each variable, one at a time. Define:

s ≜ [s1, ..., sT ]
T ∈ R3T

v ≜ [v1, ...,vT ]
T ∈ R3T−3

r ≜ [vec(R1), ..., vec(RT )]
T ∈ R9T

(A.18)

We seek to write the Lagrangian of the problem as:

L(r, s,v,µ) = ∥Arr−Ass+Ag∥2 + ∥Avv∥2 + µT(Dss− v) (A.19)
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Algebraic Manipulation

Begin with the optimal shape coefficient c. Proposition 3.2.1 gives:

c⋆ = 2G

BT
T∑
t=1

Wt

R
T
t y

1
t − st
...

RT
t y

N
t − st

+ λc̄

+ g (A.20)

= 2GBT
T∑
t=1

Wt

R
T
t

. . .
RT

t


︸ ︷︷ ︸

=IN⊗RT
t

y
t
1
...
yt
N


︸ ︷︷ ︸

≜yt

−2GBT
T∑
t=1

Wt

st...
st

+ 2Gλc̄+ g︸ ︷︷ ︸
≜ḡ

(A.21)

=

2GBT
[
W1

(
(y1)T ⊗ I3

)
... WT

(
(yT )T ⊗ I3

)]
P︸ ︷︷ ︸

≜Cr

r

− 2GBT

w
1
1I3 ... wT

1 I3
... . . . ...

w1
NI3 ... wT

NI3


︸ ︷︷ ︸

≜Cs

s+ ḡ
(A.22)

= Crr−Css+ ḡ (A.23)

where we used the "vec trick" to rewrite the Kronecker product and P is the permutation
matrix to convert vec(RT

t ) to r = vec(Rt).
Now we rewrite the objective. The first term is:

f1 =
T∑
t=1

N∑
i=1

wi
t

∥∥RT
t y

i
t −Bic

⋆ − st
∥∥2 (A.24)

=
T∑
t=1

∥∥∥∥∥∥∥
√

Wt((y
t)T ⊗ I3)vec(R

T
t )−

√
WtBc⋆ −

w
t
1I3
...

wt
NI3


︸ ︷︷ ︸

≜w̄t

st

∥∥∥∥∥∥∥
2

(A.25)

=

∥∥∥∥∥∥∥ diag({
√

Wt((y
t)T ⊗ I3)}Tt=1)Pr− diag({wt}Tt=1)s−


√
W1B
...√

WTB

 (Crr−Css+ ḡ)

∥∥∥∥∥∥∥
2

(A.26)

≜ ∥Ãrr− Ãss+ Ãg∥2 (A.27)

It remains to rewrite the second and third terms of the objective and the constraints.
We continue with the objective’s second term λ∥c⋆ − c̄∥2:

λ∥c⋆ − c̄∥2 = ∥
√
λCrr−

√
λCss+

√
λ(ḡ − c̄)∥2 (A.28)
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The third term of the objective is also simple:

T∑
t=1

ωt∥vt+1 − vt∥2 =

∥∥∥∥∥∥∥

√
ω1(v2 − v1)

...√
ωT−1(vT − vT−1)


∥∥∥∥∥∥∥
2

(A.29)

=

∥∥∥∥∥∥∥
−
√
ω1 I3

√
ω1 I3 ... 0 0

...
... . . . ...

...
0 0 ... −√ωT−1 I3

√
ωT I3

v

∥∥∥∥∥∥∥
2

(A.30)

≜ ∥Avv∥2 (A.31)

Lastly, we rewrite the set of constraints st+1 = st + v:

0 = st+1 − st − v =


−I3 I3 0 ... 0 0
0 −I3 I3 ... 0 0

. . .
−I3 I3

 s− v ≜ Dss− v (A.32)

Optimal Position and Velocity

As with shape, use stationarity and primal feasibility. Let Ar ≜ [ÃT
r ,
√
λCT

r ]
T, As ≜

[ÃT
s ,
√
λCT

s ]
T, and Ag ≜ [ÃT

g ,
√
λ(ḡ − c̄)T]T be the coefficients of the rotations, positions,

and scalar parts respectively. The Lagrangian is:

L(r, s,v,µ) = ∥Arr−Ass+Ag∥2 + ∥Avv∥2 + µT(Dss− v) (A.33)

The stationarity conditions for s and v are:

0 = ∇sL = 2AT
sAg + 2AT

sArr+ 2AT
sAss+DT

sµ (A.34)
0 = ∇vL = 2AT

vAvv − µ (A.35)

Putting this together with the constraint 0 = Dss− v, we arrive at the linear system in
(3.14).

A.5 Additional Experimental Results

A.5.1 Additional Synthetic Results

In Section 3.4.1 we showed the robustness of CAST⋆ to measurement and process noise, and
the robustness of CAST# to outliers. Here we give the runtimes of each method (Table A.1),
show results for the choice of weights resulting from MAP estimation (Fig. A.1), and address
the EKF results (Fig. A.3). Having established similar performance of the world and body-
frame motion models, this appendix considers the body-frame motion model apart from run
times.
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Table A.1: Synthetic Experiment Runtimes

Runtime (s) PACE CAST⋆-B CAST⋆-W
CAST⋆-U4 8 12 4 8 12

Meas. Noise 0.0028 0.483 2.15 5.49 0.0786 0.427 1.23 5.25
Proc. Noise 0.0040 0.857 4.05 10.6 0.0315 0.171 0.507 10.2

From Table A.1 we observe CAST⋆ is the slower than the single-frame method PACE,
which is expected. While the results are obtained with an unoptimized MATLAB imple-
mentation, the world-frame version is still fast enough for real-time use. This aside, the
variable horizon length allows a trade-off between computational speed and accuracy. As
computation improves, the benefits of certifiable optimality and increased accuracy make
CAST⋆ an attractive choice of tracking algorithm.

Recall that in the tests in Section 3.4 we chose the velocity weights to be ωt = 1 instead
of setting them as prescribed by MAP estimation (where they should be taken as the inverse
of the variance of the prior). This is equivalent to increasing the standard deviation of the
velocity noise by a factor of 10; in other words, it reduces the effect of motion smoothing.
Fig. A.1 shows that using the true velocity covariance degrades tightness, although it does
not have any visible effect on the accuracy results.

Figure A.1: Performance of CAST⋆ in synthetic experiments with increasing mea-
surement noise. Robustness to measurement noise with CAST⋆ using the inverse of the
simulated velocity covariance for the velocity weights ωt. The key difference between this
plot and Fig. 3.3(a) lies in the suboptimality gap figure, where CAST⋆ loses tightness quickly.
Despite losing its optimality certificate, CAST⋆ maintains the lowest position, rotation, and
shape errors.

We also present synthetic results for the world-frame motion model, an analog to the
body-frame results in Fig. 3.3. Here, we generate synthetic data according to the world-
frame motion model (3.4) and perturb it with Gaussian and Langevin random noise. These
results are nearly identical to the synthetic results for the body-frame model; increasing
the number of frames improves accuracy, the motion model is effective for small number of
frames, and the compatibility tests (MILP) handle the majority of outliers quickly. One
key difference with Fig. 3.3 is outlier robustness: CAST# remains accurate up to and just
beyond 60% random outliers. This result may be partly an artifact of how the same outlier
generation process manifests differently for different motion models.

Lastly, we present additional results showing the performance of the EKF using perturbed
ground truth data instead of PACE. Specifically, we perturb the ground truth poses according

79



(a) Measurement noise robustness of CAST⋆ with fixed process noise.

(b) Process noise robustness of CAST⋆ with fixed measurement noise.

(c) Outlier robustness of CAST# and ablations.

Figure A.2: Performance of CAST⋆-W and CAST#-W in synthetic experiments

to a zero-mean Gaussian with standard deviation equal to 1/25th of the measurement noise
for position and 1/50th for rotation (arbitrarily chosen as realistic values). Fig. A.3 shows
the median EKF estimate consistently beats the perturbed ground truth value (results are
averaged over 500 independent trials for each noise value). The large interquartile range is
likely because of errors due to linearization, particularly of the constant twist motion model.
The EKF likely struggled when using PACE’s poses in the measurement update because of
the high variance and heavy-tailed distribution of the estimates.

Table A.2: Additional YCBInEOAT Results

Method Bleach Soup
ADD ADD-S ADD ADD-S

6-PACK 4.18 18.00 12.82 60.32
TEASER++ 35.39 46.40 65.85 81.53
MaskFusion 29.83 43.31 5.65 6.45
BundleTrack 89.34 94.72 86.00 95.13
BundleSDF 85.59 93.11 80.54 96.47
CAST#-8 47.53 45.82 27.61 41.70
CAST#-GT 62.19 75.14 37.07 63.29
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Figure A.3: Extended Kalman Filter with perturbed ground truth measurements.
With Gaussian-perturbed ground truth measurements, the extended Kalman filter outper-
forms the raw measurements in median error across measurement noise values. This supports
our claim that the EKF performs poorly using pose estimate from PACE, likely due to the
high variance and heavy-tailed distribution of the estimates.

A.5.2 Results for Bleach and Soup on YCBInEOAT

Table A.2 shows scores for all tested methods on the “soup” and “bleach” objects. As men-
tioned in the text, the soup object is particularly difficult because it is very small and cylin-
drically symmetric, which CAST⋆ is not designed to handle (other approaches also achieve
low scores, compared to the other objects). The bleach object is larger but matches the
background color, making keypoint detection difficult.
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Appendix B

Additional Results and Proofs for
Conformalized Pose and Uncertainty
Estimation

B.1 Explicit Form of Rotation Equality Constraints
For completeness, we provide explicit forms of the equality constraint matrices Qk used
in Chapter 4. We write the constraint matrices in sparse form, specifying only the nonzero
elements. The notation (i, j, l) means Qi,j = l. Let R ∈ SO(3) and denote its columns by
ri, i = 1, 2, 3.

Three constraint matrices enforce that the columns of R are unit norm:

∥r1∥2 = 1 =⇒ Q1 : (1, 1, 1), (2, 2, 1), (3, 3, 1), (13, 13,−1)
∥r2∥2 = 1 =⇒ Q2 : (4, 1, 1), (5, 2, 1), (6, 3, 1), (13, 13,−1)
∥r3∥2 = 1 =⇒ Q3 : (7, 1, 1), (8, 2, 1), (9, 3, 1), (13, 13,−1)

(B.1)

Three constraint matrices enforce the columns are orthogonal (have zero dot product).
Although we don’t explicitly specify, all Qk are symmetric.

r1 · r2 = 1 =⇒ Q4 : (1, 4, 1), (2, 5, 1), (3, 6, 1)
r1 · r3 = 1 =⇒ Q5 : (1, 7, 1), (2, 8, 1), (3, 9, 1)
r3 · r2 = 1 =⇒ Q6 : (4, 7, 1), (5, 8, 1), (6, 9, 1)

(B.2)

The final 9 constraint matrices enforce the right hand rule cross products between the
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Table B.1: Coverage Percentages for ∞-Norm Pose Uncertainty Set

α = 0.1 α = 0.4

N Keypts (P∞) Keypts (P∞)
Calibration S R S R S R S R

ape 9 41.2 87.3 2.0 60.2 19.6 53.1 0.1 9.9
can 8 61.8 87.8 9.6 59.4 21.1 53.8 0 6.6
cat 10 62.7 88.8 8.6 57.3 32.3 56.8 0.1 5.1

duck 9 31.7 88.4 1.2 70.2 13.2 54.8 0.1 16.5
driller 11 66.5 87.5 17.4 56.7 23.6 53.4 0.2 6.8

eggbox 9 20.6 87.7 1.6 58.8 8.8 58.5 0 23.5
glue 10 42.3 86.3 2.0 54.7 13.2 50.1 0.6 8.0

holepuncher 10 45.1 85.2 1.1 42.2 18.2 52.2 0.1 4.1

average 46.5 87.4 5.7 57.3 18.7 54.2 0.1 10.0

columns of R, element-wise.

r1 × r2 = r3 =⇒


Q7 : (2, 6, 1), (3, 5,−1), (13, 7,−1)
Q8 : (3, 4, 1), (1, 6,−1), (13, 8,−1)
Q9 : (1, 5, 1), (2, 4,−1), (13, 9,−1)

r2 × r3 = r1 =⇒


Q10 : (5, 9, 1), (6, 8,−1), (13, 1,−1)
Q11 : (6, 7, 1), (4, 9,−1), (13, 2,−1)
Q12 : (4, 8, 1), (5, 7,−1), (13, 3,−1)

r3 × r1 = r2 =⇒


Q13 : (8, 3, 1), (9, 2,−1), (13, 4,−1)
Q14 : (9, 1, 1), (7, 3,−1), (13, 5,−1)
Q15 : (7, 2, 1), (8, 1,−1), (13, 6,−1)

(B.3)

B.2 Additional Experimental Results

B.2.1 Calibration for ∞-Norm

For completeness, we provide the analog to Table 4.1 for the ∞-norm case. As in Section
4.4.1 we compare calibration on 200 independent synthetically-generated images (Synthetic)
and calibration on the 200 real images selected by BOP [83]. The results, shown in Table B.1,
are not significantly different from the 2-norm case. Across all calibration data the coverage
results are slightly worse. The same coverage gap of 30− 40% holds between keypoints and
poses.

B.2.2 Extra Central Pose Results

In this section we provide feasibility, tightness, and runtime results (Table B.2) and additional
central pose results (Table B.3). For both tables, we compare against two ablations of our
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method. The ablation Locp omits the semidefinite relaxation and exclusively runs the local
solver using Ipopt [78]. To initialize, we give a random rotation in SO(3) and zero for the
margins and translations. We rerun the local solver up to 25 times, terminating at the first
iteration where it converges to a solution. This ablation is designed to show the value of
the semidefinite initialization, which generates an initial guess and only runs the local solver
once.

We also compare against a maximum margin formulation (labeled as “Margin”). The
key idea is to find the pose most consistent with the backprojection constraints for a single
confidence α. In particular, we solve the following optimization problem:

max
t∈R3, R∈SO(3)

γ∈RN

N∑
i=1

γi

s.t.
∥∥(yiê

T
3 − I3)K(Rbi + t)

∥∥2
2
≤
(
riê

T
3K(Rbi + t)

)2 − γi,

ê3 ·K(Rbi + t) > 0, i = 1, ..., N

(B.4)

Note that we only implement the maximum margin for the case p = 2. Eq. (B.4) simply
maximizes the distance from the boundary of each backprojection constraint (BP2) subject
to the chirality constraint (FoC). Observe that (B.4) is a quadratically-constrained quadratic
problem in R and t, but both the objective and constraints are linear in the margin γ. Thus,
we can use a first-order semidefinite relaxation to solve the problem (see Section 2.1). As
shown in Table B.2, this relaxation is empirically tight. The key issue with the maximum
margin formulation is its bias towards estimates which are further away from the camera.
This significantly limits its performance when keypoint uncertainty sets are large.

Feasibility, Tightness, and Runtime Results for Central Pose

Table B.2 provides feasibility and tightness results for our central pose algorithms under
real calibration. Feasibility measures the percentage of pose estimates which satisfy the
chirality (FoC) and backprojection (BPp) constraints for the returned value of γ. Our
tightness threshold is 10−3. Runtime results reflect performance in Julia with precompilation
time excluded. Results are means across all objects.

As previously mentioned, the maximum margin is fast and an empirically tight semidef-
inite relaxation for the majority of cases. Interestingly, OURS2 is tight for just over 40% of
frames; although the results are generally worse than OURS∞, this suggests p = 2 can find
good solutions when the measurements are reasonable (note that tightness does not imply a
reasonable pose estimate; rather, it implies we found the global solution to the optimization
problem (4.10)). The poor pose estimation performance when p = 2 may suggest bad outlier
handling. Lastly, we note that the local solver ablations are much slower than simply using
a semidefinite relaxation. This reflects the underlying non-convexity of the problem; the
solver often fails to solve with a random initial guess.

Central Pose Ablations

We also give extra pose estimation results for our method and ablations in Table B.3. In the
table, R refers to calibration on real data and S refers to calibration on synthetic data. The
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Table B.2: Feasibility and Tightness Results

α = 0.1 α = 0.4

Feasible (%) Tight (%) Time (ms) Feasible (%) Tight (%) Time (ms)

Loc2 53.0 153.3 54.3 158.6
Loc∞ 99.7 478.1 99.7 362.7

OURS2 55.7 43.6 88.1 57.5 41.1 106.3
OURS∞ 95.3 0 116.4 97.8 0 90.7
Margin 98.6 83.5 19.8 97.8 75.6 26.2

Table B.3: Percentage of 2D Projection Errors Under 5 Pixels with Additional Methods

α = 0.1 α = 0.4

Loc2 Loc∞ OURS2 OURS∞ Margin Loc2 Loc∞ OURS2 OURS∞ Margin
R R R S R S R S R R R S R S R S

ape 76.9 41.0 77.6 76.8 77.0 59.3 61.1 75.8 76.6 58.0 76.6 76.7 76.4 51.8 75.4 76.9
can 16.2 63.9 19.2 53.4 82.2 76.5 72.0 82.0 69.9 77.0 69.9 84.0 81.3 65.3 82.3 85.6
cat 77.2 44.7 77.8 77.3 71.1 62.4 65.0 74.1 77.8 63.8 77.8 77.0 73.7 62.3 75.5 76.3

duck 80.6 45.4 80.7 80.5 79.0 57.4 57.0 79.9 80.5 52.5 80.5 80.6 76.9 48.6 78.4 80.3
driller 65.5 42.0 65.3 65.9 64.6 56.3 53.3 62.5 66.2 55.7 66.2 66.7 64.3 38.6 64.6 66.0

eggbox 0 1.6 0 0.2 4.8 1.7 0 2.6 0.1 1.7 0.1 3.1 4.5 2.9 0 4.7
glue 1.7 25.0 1.5 32.9 55.9 45.4 29.0 55.2 8.0 39.5 8.0 55.2 55.7 43.6 53.3 56.4

holepuncher 7.4 49.2 7.0 62.0 76.0 61.2 69.2 75.3 48.5 65.0 48.5 74.1 74.0 50.5 73.9 74.0

average 40.7 39.1 41.1 56.1 63.8 52.5 50.8 63.4 53.5 51.7 53.5 64.7 63.4 45.5 62.9 65.0

main text contains results only from real calibration due to the exchangeability observation
in Table 4.1. However, including the calibration data in evaluation data is statistically
dubious. The synthetic uncertainty sets tend to be significantly tighter than the ones from
real calibration. We report the percentage of 2D projection errors less than 5 pixels for each
object; see [81].

For real calibration, our approach with p =∞ achieves the best 2D projection error and
conclusively outperforms the local solver. The performance improvement from α = 0.1 to
α = 0.4 or from real to synthetic data reflects behavior with tighter uncertainty sets. The
local solvers, OURS2, and maximum margin all perform significantly better with smaller
uncertainty sets. This suggests that the keypoint detections are generally reasonably accurate
(maximum margin is biased towards pose estimates within the fixed-confidence keypoint
uncertainty bounds). It also suggests the semidefinite relaxation produces better results
when given smaller keypoint uncertainty radii.

Lastly, it is clear from Table B.3 that the local solver is outperformed by initializing with
a semidefinite relaxation. This is expected in the case p = 2 when the relaxation is tight,
but somewhat surprising for p =∞ when the relaxation is essentially never tight.
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(a) CDF of translation bounds on LM-O. We
show the half-length of the first and second
principal axes of our marginalized ellipse.

(b) CDF of rotation bounds on LM-O. For
our approach, we give angular bounds about
the x, y, and z axes.

Figure B.1: Tightness of angular and translational bounds for α = 0.4. The tighter
keypoint uncertainty sets are reflected in tighter translation bounds (a) and rotation bounds
(b). In particular, the translation bounds are loose along the optical axis but very tight
elsewhere. The rotational bounds are largely below 10 degrees.

B.2.3 Extra Bounding Ellipse Results

This section provides additional quantitative and qualitative results for the bounding ellipse.
In Fig. B.1 we show the cumulative distribution function (CDF) of our rotation and transla-
tion bounds for α = 0.4. We do not compare against the baselines GRCC [25] do not release
α = 0.4 results. For this figure, we consider the 7316 frames where the central pose estimate
(p = ∞) returned a feasible point and exclude the eggbox object. The rotation results are
much tighter, largely achieving bounds under 20 degrees for all axes. We also show the full
domain of the translation error bounds. While the first principal axis is relatively loose,
it is clear that the second and third principal axes are quite tight. As before, this reflects
overly conservative uncertainty along the optical axis but high confidence in perpendicular
directions.

Fig. B.2 provides two additional qualitative examples of the rotation uncertainty set at
fixed rotation for α = 0.1. For the ape object, the pose estimate was slightly off, but the
uncertainty set correctly covers the entire object. We also show a failure case (Fig. B.2b)
where the pose uncertainty set does not cover the ground truth pose. As reported in Table
4.1, this occurs about 10% of the time for α = 0.1.

87



(a) A pose estimate of the ape object with ro-
tational uncertainty at constant translation.

(b) A pose estimate of the duck object with
rotational uncertainty. The uncertainty set
clearly does not include the true duck.

Figure B.2: Extra examples of qualitative rotation sets. The ape uncertainty set (a)
covers the entire ape, in contrast to the pose estimate (outlined in black), which is slightly
off. The duck pose estimate and uncertainty set (b) are both wrong, in an example of a case
where the pose uncertainty set does not cover the true pose. Both images show frame 1099
of the LM-O dataset.
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Appendix C

Additional Results and Proofs for SCF

C.1 Proof of Proposition 5.2.3: Closed Form Solution for
Optimal Shape

TODO

C.2 Stereographic Projection of Unit Quaternions
To visualize unit quaternions in Fig. 5.1 we stereographically project them from the 4-sphere
onto the volume of the unit 3-ball. The projection is simple. Let q ∈ S3 denote a unit
quaternion. Recall that −q represents the same rotation. When the scalar part is positive,
the vector part can be understood as coordinates within the 3-ball. When the scalar part
is negative, we simply negate the quaternion and use the vector part. Thus, we project by
taking the vector part times the sign of the scalar part. For a quaternion q = [q1,q

T
v ]

T,

qproj = −sign(q1)qv (C.1)

As with any projection this is an imperfect representation of the space. Points which
are on the boundary and on opposite sides of the unit ball are actually quite close to each
other. The projection also makes the quaternion q indistinguishable from its inverse q−1 =
[q1,−qT

v ]
T.

C.3 Power Method Ablation
The Power solver we compare against in Section 5.4 is a simple ablation of SCF (Algorithm
5.1). Instead of computing the eigenvalues at each iteration, Power simply multiplies the
data matrix by the quaternion from the previous iteration and renormalizes. The algorithm
terminates at a stationary point, which also corresponds to an eigenvector. See Algorithm
C.1.
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Data: A(q) and D from (5.15)
Result: q satisfying (5.18)
initialize q0

for t← 1 to T do
qt+1 ← (A(qt) +D)qt

qt+1 ← qt+1/∥qt+1∥
/* termination condition */
if sin∡(qt,qt+1) < ϵ then

q← qt

break
end

end
Algorithm C.1: A power method for solving (5.16).

Figure C.1: Comparison with Global Solver and Objective Termination. For K >
N the performance depends heavily on choice of regularization λ. For λ = 1.0, we plot
histograms of rotation error at selected noise scales. As in Fig. 5.2, all three methods achieve
similar rotation accuracy across noise scales.

C.4 Gauss-Newton and Levenburg-Marquardt Solvers
TODO GN and LM are based on axis-angle linearization specialized to (5.13).

C.5 Extra Experimental Results with Larger Shape Li-
brary

Performance with a larger shape library strongly depends on the choice of regularization
constant λ. For λ→ 0 the problem becomes ill-conditioned and all solvers slow significantly.
Large λ greatly reduces shape ambiguity by imposing a strong prior. For these results, we
test with K = 25, N = 10, and λ = 1.0. This moderate choice of λ produces results which
are similar to Section 5.4.

90



Table C.1: Mean and 90th Percentile of Solver Runtimes (Large K)

σm = 0.25 σm = 2.5

Method Mean (ms) p90 (ms) Mean (ms) p90 (ms)

SCF 0.673 0.584 0.718 0.693
Manopt 3.779 4.456 3.526 4.334

G-N 3.491 4.220 5.816 7.436
L-M 3.642 4.418 5.655 7.452
SDP 13.715 14.543 13.936 14.780

SCF-Obj 0.586 0.510 0.587 0.555
Power 0.645 0.736 0.727 0.836

We compare the estimation accuracy of SCF with SDP and SCF-Obj in Fig. C.1. As
before, the three methods achieve virtually the same performance across noise scales. More
interestingly, the runtimes in Table C.1 are slightly different than the low K case. In partic-
ular, SCF runs at around 700 µs on average, which is near the performance of Power and is
outperformed by early objective termination SCF-Obj. For all three of these methods based
on first order conditions the 90th percentile of runtimes (p90) is below the mean, suggesting
a small concentration of problems for which many iterations were required. SCF is still sig-
nificantly faster than the other methods, which do not suffer as big of a performance drop
for larger K. The exception is SDP, which is more than 4 times slower than before.
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